Properties

Label 8-1984e4-1.1-c0e4-0-2
Degree $8$
Conductor $1.549\times 10^{13}$
Sign $1$
Analytic cond. $0.961158$
Root an. cond. $0.995060$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s − 9-s − 2·13-s − 2·17-s + 3·25-s + 2·37-s − 2·41-s − 2·45-s − 49-s − 2·53-s − 4·65-s − 2·73-s + 81-s − 4·85-s + 2·113-s + 2·117-s − 121-s + 6·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 2·153-s + 157-s + 163-s + ⋯
L(s)  = 1  + 2·5-s − 9-s − 2·13-s − 2·17-s + 3·25-s + 2·37-s − 2·41-s − 2·45-s − 49-s − 2·53-s − 4·65-s − 2·73-s + 81-s − 4·85-s + 2·113-s + 2·117-s − 121-s + 6·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 2·153-s + 157-s + 163-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 31^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 31^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{24} \cdot 31^{4}\)
Sign: $1$
Analytic conductor: \(0.961158\)
Root analytic conductor: \(0.995060\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{24} \cdot 31^{4} ,\ ( \ : 0, 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.9821551531\)
\(L(\frac12)\) \(\approx\) \(0.9821551531\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
31$C_2$ \( ( 1 + T^{2} )^{2} \)
good3$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
5$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
7$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
11$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
13$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
17$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
19$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
23$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
29$C_2$ \( ( 1 + T^{2} )^{4} \)
37$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
41$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
43$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
47$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
53$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
59$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
61$C_2$ \( ( 1 + T^{2} )^{4} \)
67$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
71$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
73$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
79$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
83$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
89$C_2$ \( ( 1 + T^{2} )^{4} \)
97$C_2$ \( ( 1 + T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.58277062721921466378865427556, −6.44890806638460420342135796666, −6.26922485789195572822733717201, −6.21066078101829189244331727224, −5.97440261911471317640928119174, −5.51451975976903869881156777510, −5.46125830841240864794367092631, −5.41311767434470613029956186916, −4.94375045952144991524498094054, −4.80100663378862606117118451118, −4.64277121032283770493315847182, −4.59502158495483365140477653730, −4.20099839177430129348746323847, −4.04920243340125605272452847751, −3.46588726751270915960862410420, −3.22685080572336038712856775444, −3.06061208596065407044108493998, −2.76727707435279128502493559731, −2.70762004757654679328877032014, −2.23123348947667574866130524240, −2.09132947034359915894078793871, −1.95544786336614072643194391488, −1.56709422524660298961366664399, −1.22162048872448090732152873889, −0.46337993976328213097538312990, 0.46337993976328213097538312990, 1.22162048872448090732152873889, 1.56709422524660298961366664399, 1.95544786336614072643194391488, 2.09132947034359915894078793871, 2.23123348947667574866130524240, 2.70762004757654679328877032014, 2.76727707435279128502493559731, 3.06061208596065407044108493998, 3.22685080572336038712856775444, 3.46588726751270915960862410420, 4.04920243340125605272452847751, 4.20099839177430129348746323847, 4.59502158495483365140477653730, 4.64277121032283770493315847182, 4.80100663378862606117118451118, 4.94375045952144991524498094054, 5.41311767434470613029956186916, 5.46125830841240864794367092631, 5.51451975976903869881156777510, 5.97440261911471317640928119174, 6.21066078101829189244331727224, 6.26922485789195572822733717201, 6.44890806638460420342135796666, 6.58277062721921466378865427556

Graph of the $Z$-function along the critical line