Properties

Label 4-1960e2-1.1-c1e2-0-22
Degree $4$
Conductor $3841600$
Sign $1$
Analytic cond. $244.943$
Root an. cond. $3.95609$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 3·9-s − 4·11-s − 4·13-s − 2·17-s − 4·19-s − 4·23-s − 4·29-s + 8·31-s − 6·37-s − 12·41-s − 16·43-s − 3·45-s − 4·47-s − 6·53-s + 4·55-s + 4·59-s + 2·61-s + 4·65-s − 8·67-s + 6·73-s − 32·83-s + 2·85-s + 6·89-s + 4·95-s − 28·97-s − 12·99-s + ⋯
L(s)  = 1  − 0.447·5-s + 9-s − 1.20·11-s − 1.10·13-s − 0.485·17-s − 0.917·19-s − 0.834·23-s − 0.742·29-s + 1.43·31-s − 0.986·37-s − 1.87·41-s − 2.43·43-s − 0.447·45-s − 0.583·47-s − 0.824·53-s + 0.539·55-s + 0.520·59-s + 0.256·61-s + 0.496·65-s − 0.977·67-s + 0.702·73-s − 3.51·83-s + 0.216·85-s + 0.635·89-s + 0.410·95-s − 2.84·97-s − 1.20·99-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3841600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3841600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(3841600\)    =    \(2^{6} \cdot 5^{2} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(244.943\)
Root analytic conductor: \(3.95609\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 3841600,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_2$ \( 1 + T + T^{2} \)
7 \( 1 \)
good3$C_2$ \( ( 1 - p T + p T^{2} )( 1 + p T + p T^{2} ) \)
11$C_2^2$ \( 1 + 4 T + 5 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
13$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
17$C_2^2$ \( 1 + 2 T - 13 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
19$C_2^2$ \( 1 + 4 T - 3 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
23$C_2^2$ \( 1 + 4 T - 7 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
29$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
31$C_2^2$ \( 1 - 8 T + 33 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
37$C_2^2$ \( 1 + 6 T - T^{2} + 6 p T^{3} + p^{2} T^{4} \)
41$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 + 4 T - 31 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
53$C_2^2$ \( 1 + 6 T - 17 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
59$C_2^2$ \( 1 - 4 T - 43 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
61$C_2^2$ \( 1 - 2 T - 57 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
67$C_2^2$ \( 1 + 8 T - 3 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2^2$ \( 1 - 6 T - 37 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
79$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
83$C_2$ \( ( 1 + 16 T + p T^{2} )^{2} \)
89$C_2^2$ \( 1 - 6 T - 53 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
97$C_2$ \( ( 1 + 14 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.696351068262811813343737346114, −8.625490381856910231652699747815, −8.098616550034629606758454378740, −7.996911434481416168989320011577, −7.31981883216940646131873622496, −7.10087484057734672004397554693, −6.58473123535654964919161987560, −6.50754188944160612767494695599, −5.60895057561868352633980109703, −5.36987291517909926555659346102, −4.69720426901233848039597566473, −4.68485112461023760527233830364, −4.08278301190477344275218359540, −3.58370742225812749430113189290, −2.98791496680025517636856001720, −2.56543046560386317481587601774, −1.82805362826891588622599990680, −1.55878785509549504847810268203, 0, 0, 1.55878785509549504847810268203, 1.82805362826891588622599990680, 2.56543046560386317481587601774, 2.98791496680025517636856001720, 3.58370742225812749430113189290, 4.08278301190477344275218359540, 4.68485112461023760527233830364, 4.69720426901233848039597566473, 5.36987291517909926555659346102, 5.60895057561868352633980109703, 6.50754188944160612767494695599, 6.58473123535654964919161987560, 7.10087484057734672004397554693, 7.31981883216940646131873622496, 7.996911434481416168989320011577, 8.098616550034629606758454378740, 8.625490381856910231652699747815, 8.696351068262811813343737346114

Graph of the $Z$-function along the critical line