Properties

Label 4-1960e2-1.1-c1e2-0-11
Degree $4$
Conductor $3841600$
Sign $1$
Analytic cond. $244.943$
Root an. cond. $3.95609$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s + 5-s + 3·9-s + 5·11-s + 10·13-s − 3·15-s − 7·17-s − 2·19-s + 2·23-s + 14·29-s + 4·31-s − 15·33-s + 6·37-s − 30·39-s + 24·41-s − 4·43-s + 3·45-s + 47-s + 21·51-s + 5·55-s + 6·57-s − 4·59-s + 4·61-s + 10·65-s − 8·67-s − 6·69-s + 6·73-s + ⋯
L(s)  = 1  − 1.73·3-s + 0.447·5-s + 9-s + 1.50·11-s + 2.77·13-s − 0.774·15-s − 1.69·17-s − 0.458·19-s + 0.417·23-s + 2.59·29-s + 0.718·31-s − 2.61·33-s + 0.986·37-s − 4.80·39-s + 3.74·41-s − 0.609·43-s + 0.447·45-s + 0.145·47-s + 2.94·51-s + 0.674·55-s + 0.794·57-s − 0.520·59-s + 0.512·61-s + 1.24·65-s − 0.977·67-s − 0.722·69-s + 0.702·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3841600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3841600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(3841600\)    =    \(2^{6} \cdot 5^{2} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(244.943\)
Root analytic conductor: \(3.95609\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 3841600,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.956950036\)
\(L(\frac12)\) \(\approx\) \(1.956950036\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_2$ \( 1 - T + T^{2} \)
7 \( 1 \)
good3$C_2$ \( ( 1 + p T^{2} )( 1 + p T + p T^{2} ) \)
11$C_2^2$ \( 1 - 5 T + 14 T^{2} - 5 p T^{3} + p^{2} T^{4} \)
13$C_2$ \( ( 1 - 5 T + p T^{2} )^{2} \)
17$C_2^2$ \( 1 + 7 T + 32 T^{2} + 7 p T^{3} + p^{2} T^{4} \)
19$C_2^2$ \( 1 + 2 T - 15 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
23$C_2^2$ \( 1 - 2 T - 19 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
29$C_2$ \( ( 1 - 7 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 11 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
37$C_2^2$ \( 1 - 6 T - T^{2} - 6 p T^{3} + p^{2} T^{4} \)
41$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 - T - 46 T^{2} - p T^{3} + p^{2} T^{4} \)
53$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
59$C_2^2$ \( 1 + 4 T - 43 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
61$C_2^2$ \( 1 - 4 T - 45 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
67$C_2^2$ \( 1 + 8 T - 3 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2^2$ \( 1 - 6 T - 37 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
79$C_2^2$ \( 1 - 3 T - 70 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
83$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
89$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
97$C_2$ \( ( 1 + 13 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.419405070665591639616921151943, −8.859469700794821283040768940734, −8.820918428669247315650459461074, −8.179772671739186686735537662119, −8.023789359013322435640585830623, −7.15523333425596544443829056455, −6.60295424472382285492880394567, −6.39723349026311220489765572830, −6.29364345372281787405357620537, −6.03776595078994905001827323637, −5.51779709043169992480590680719, −5.02125871082504210783273321456, −4.29098332677716516133742311035, −4.24201291488653967627097366766, −3.89863924625019302538537302894, −2.92305349634088367619143291018, −2.58696421747571824449021480651, −1.62458168181415894340280030754, −1.04527688214650117404540081771, −0.74147257859353841690614118403, 0.74147257859353841690614118403, 1.04527688214650117404540081771, 1.62458168181415894340280030754, 2.58696421747571824449021480651, 2.92305349634088367619143291018, 3.89863924625019302538537302894, 4.24201291488653967627097366766, 4.29098332677716516133742311035, 5.02125871082504210783273321456, 5.51779709043169992480590680719, 6.03776595078994905001827323637, 6.29364345372281787405357620537, 6.39723349026311220489765572830, 6.60295424472382285492880394567, 7.15523333425596544443829056455, 8.023789359013322435640585830623, 8.179772671739186686735537662119, 8.820918428669247315650459461074, 8.859469700794821283040768940734, 9.419405070665591639616921151943

Graph of the $Z$-function along the critical line