Properties

Label 4-14e4-1.1-c3e2-0-7
Degree $4$
Conductor $38416$
Sign $1$
Analytic cond. $133.734$
Root an. cond. $3.40064$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 14·5-s − 17·9-s + 32·11-s − 28·13-s − 154·17-s − 224·19-s + 68·23-s + 45·25-s − 236·29-s − 196·31-s + 346·37-s − 420·41-s − 344·43-s + 238·45-s + 84·47-s − 438·53-s − 448·55-s − 56·59-s + 98·61-s + 392·65-s + 336·67-s + 896·71-s + 966·73-s − 52·79-s − 440·81-s + 392·83-s + 2.15e3·85-s + ⋯
L(s)  = 1  − 1.25·5-s − 0.629·9-s + 0.877·11-s − 0.597·13-s − 2.19·17-s − 2.70·19-s + 0.616·23-s + 9/25·25-s − 1.51·29-s − 1.13·31-s + 1.53·37-s − 1.59·41-s − 1.21·43-s + 0.788·45-s + 0.260·47-s − 1.13·53-s − 1.09·55-s − 0.123·59-s + 0.205·61-s + 0.748·65-s + 0.612·67-s + 1.49·71-s + 1.54·73-s − 0.0740·79-s − 0.603·81-s + 0.518·83-s + 2.75·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 38416 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 38416 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(38416\)    =    \(2^{4} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(133.734\)
Root analytic conductor: \(3.40064\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 38416,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
good3$C_2^2$ \( 1 + 17 T^{2} + p^{6} T^{4} \)
5$D_{4}$ \( 1 + 14 T + 151 T^{2} + 14 p^{3} T^{3} + p^{6} T^{4} \)
11$D_{4}$ \( 1 - 32 T + 1105 T^{2} - 32 p^{3} T^{3} + p^{6} T^{4} \)
13$D_{4}$ \( 1 + 28 T + 3998 T^{2} + 28 p^{3} T^{3} + p^{6} T^{4} \)
17$D_{4}$ \( 1 + 154 T + 15163 T^{2} + 154 p^{3} T^{3} + p^{6} T^{4} \)
19$D_{4}$ \( 1 + 224 T + 25929 T^{2} + 224 p^{3} T^{3} + p^{6} T^{4} \)
23$D_{4}$ \( 1 - 68 T + 23677 T^{2} - 68 p^{3} T^{3} + p^{6} T^{4} \)
29$D_{4}$ \( 1 + 236 T + 33694 T^{2} + 236 p^{3} T^{3} + p^{6} T^{4} \)
31$D_{4}$ \( 1 + 196 T + 67373 T^{2} + 196 p^{3} T^{3} + p^{6} T^{4} \)
37$D_{4}$ \( 1 - 346 T + 65967 T^{2} - 346 p^{3} T^{3} + p^{6} T^{4} \)
41$D_{4}$ \( 1 + 420 T + 176614 T^{2} + 420 p^{3} T^{3} + p^{6} T^{4} \)
43$C_2$ \( ( 1 + 4 p T + p^{3} T^{2} )^{2} \)
47$D_{4}$ \( 1 - 84 T + 201085 T^{2} - 84 p^{3} T^{3} + p^{6} T^{4} \)
53$D_{4}$ \( 1 + 438 T + 280447 T^{2} + 438 p^{3} T^{3} + p^{6} T^{4} \)
59$D_{4}$ \( 1 + 56 T + 360889 T^{2} + 56 p^{3} T^{3} + p^{6} T^{4} \)
61$D_{4}$ \( 1 - 98 T + 253751 T^{2} - 98 p^{3} T^{3} + p^{6} T^{4} \)
67$D_{4}$ \( 1 - 336 T + 627937 T^{2} - 336 p^{3} T^{3} + p^{6} T^{4} \)
71$D_{4}$ \( 1 - 896 T + 800494 T^{2} - 896 p^{3} T^{3} + p^{6} T^{4} \)
73$D_{4}$ \( 1 - 966 T + 187 p^{2} T^{2} - 966 p^{3} T^{3} + p^{6} T^{4} \)
79$D_{4}$ \( 1 + 52 T + 332261 T^{2} + 52 p^{3} T^{3} + p^{6} T^{4} \)
83$D_{4}$ \( 1 - 392 T + 895462 T^{2} - 392 p^{3} T^{3} + p^{6} T^{4} \)
89$D_{4}$ \( 1 - 294 T + 1298347 T^{2} - 294 p^{3} T^{3} + p^{6} T^{4} \)
97$D_{4}$ \( 1 + 420 T + 1655734 T^{2} + 420 p^{3} T^{3} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.50305745965956194702743090768, −11.45695815054120075962035368591, −10.80918552284762590320421967192, −10.76824062622858711036973019571, −9.628636092177406919684394689622, −9.235370152542816825252926220637, −8.738130643281818182171738298682, −8.278551643650360686471859806454, −7.88591283822694986533319180516, −7.01653833286608017197070434460, −6.63069760378476486248722576046, −6.29258833211850308091757562822, −5.25116919918848854530789952459, −4.61844003986363486281745898657, −4.00761387758229104088140634818, −3.67914194475695210836413398750, −2.48274414125859817968103859325, −1.87397472546517377911628955261, 0, 0, 1.87397472546517377911628955261, 2.48274414125859817968103859325, 3.67914194475695210836413398750, 4.00761387758229104088140634818, 4.61844003986363486281745898657, 5.25116919918848854530789952459, 6.29258833211850308091757562822, 6.63069760378476486248722576046, 7.01653833286608017197070434460, 7.88591283822694986533319180516, 8.278551643650360686471859806454, 8.738130643281818182171738298682, 9.235370152542816825252926220637, 9.628636092177406919684394689622, 10.76824062622858711036973019571, 10.80918552284762590320421967192, 11.45695815054120075962035368591, 11.50305745965956194702743090768

Graph of the $Z$-function along the critical line