Properties

Degree $2$
Conductor $196$
Sign $-0.553 + 0.832i$
Motivic weight $1$
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (0.366 − 1.36i)2-s + (0.866 − 1.5i)3-s + (−1.73 − i)4-s + (1.5 − 0.866i)5-s + (−1.73 − 1.73i)6-s + (−2 + 1.99i)8-s + (−0.633 − 2.36i)10-s + (−0.866 − 0.5i)11-s + (−3 + 1.73i)12-s + 3.46i·13-s − 3i·15-s + (1.99 + 3.46i)16-s + (1.5 + 0.866i)17-s + (−2.59 − 4.5i)19-s − 3.46·20-s + ⋯
L(s)  = 1  + (0.258 − 0.965i)2-s + (0.499 − 0.866i)3-s + (−0.866 − 0.5i)4-s + (0.670 − 0.387i)5-s + (−0.707 − 0.707i)6-s + (−0.707 + 0.707i)8-s + (−0.200 − 0.748i)10-s + (−0.261 − 0.150i)11-s + (−0.866 + 0.499i)12-s + 0.960i·13-s − 0.774i·15-s + (0.499 + 0.866i)16-s + (0.363 + 0.210i)17-s + (−0.596 − 1.03i)19-s − 0.774·20-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.553 + 0.832i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.553 + 0.832i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(196\)    =    \(2^{2} \cdot 7^{2}\)
Sign: $-0.553 + 0.832i$
Motivic weight: \(1\)
Character: $\chi_{196} (31, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 196,\ (\ :1/2),\ -0.553 + 0.832i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.722711 - 1.34873i\)
\(L(\frac12)\) \(\approx\) \(0.722711 - 1.34873i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.366 + 1.36i)T \)
7 \( 1 \)
good3 \( 1 + (-0.866 + 1.5i)T + (-1.5 - 2.59i)T^{2} \)
5 \( 1 + (-1.5 + 0.866i)T + (2.5 - 4.33i)T^{2} \)
11 \( 1 + (0.866 + 0.5i)T + (5.5 + 9.52i)T^{2} \)
13 \( 1 - 3.46iT - 13T^{2} \)
17 \( 1 + (-1.5 - 0.866i)T + (8.5 + 14.7i)T^{2} \)
19 \( 1 + (2.59 + 4.5i)T + (-9.5 + 16.4i)T^{2} \)
23 \( 1 + (0.866 - 0.5i)T + (11.5 - 19.9i)T^{2} \)
29 \( 1 - 4T + 29T^{2} \)
31 \( 1 + (0.866 - 1.5i)T + (-15.5 - 26.8i)T^{2} \)
37 \( 1 + (1.5 + 2.59i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 + 3.46iT - 41T^{2} \)
43 \( 1 + 2iT - 43T^{2} \)
47 \( 1 + (-4.33 - 7.5i)T + (-23.5 + 40.7i)T^{2} \)
53 \( 1 + (-0.5 + 0.866i)T + (-26.5 - 45.8i)T^{2} \)
59 \( 1 + (2.59 - 4.5i)T + (-29.5 - 51.0i)T^{2} \)
61 \( 1 + (-4.5 + 2.59i)T + (30.5 - 52.8i)T^{2} \)
67 \( 1 + (2.59 + 1.5i)T + (33.5 + 58.0i)T^{2} \)
71 \( 1 - 14iT - 71T^{2} \)
73 \( 1 + (7.5 + 4.33i)T + (36.5 + 63.2i)T^{2} \)
79 \( 1 + (7.79 - 4.5i)T + (39.5 - 68.4i)T^{2} \)
83 \( 1 + 13.8T + 83T^{2} \)
89 \( 1 + (13.5 - 7.79i)T + (44.5 - 77.0i)T^{2} \)
97 \( 1 + 17.3iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.41847276656176390739736889404, −11.30556850469430500002692901921, −10.26324376448025940386288163177, −9.187614351117016647491275895634, −8.428552086087957708997344353529, −7.01701416665119670608538140412, −5.65848175581371508819797104475, −4.38760915688068305876352430193, −2.64570715967625067272544901612, −1.54088698623920149509906363900, 3.03069037723054284426661923670, 4.24586697932127391967279326414, 5.50641057379856802006164589792, 6.49930992977061403608418558978, 7.84263370032142427596333648976, 8.749541074546534054826803460506, 9.942282879702904896646344038417, 10.29285131422331420742746557470, 12.14913546012102935845267151443, 13.09908557967236076310251371380

Graph of the $Z$-function along the critical line