# Properties

 Degree $2$ Conductor $196$ Sign $0.553 + 0.832i$ Motivic weight $1$ Primitive yes Self-dual no Analytic rank $0$

# Related objects

## Dirichlet series

 L(s)  = 1 + (−1.36 + 0.366i)2-s + (−0.866 − 1.5i)3-s + (1.73 − i)4-s + (1.5 + 0.866i)5-s + (1.73 + 1.73i)6-s + (−1.99 + 2i)8-s + (−2.36 − 0.633i)10-s + (0.866 − 0.5i)11-s + (−3 − 1.73i)12-s − 3.46i·13-s − 3i·15-s + (1.99 − 3.46i)16-s + (1.5 − 0.866i)17-s + (2.59 − 4.5i)19-s + 3.46·20-s + ⋯
 L(s)  = 1 + (−0.965 + 0.258i)2-s + (−0.499 − 0.866i)3-s + (0.866 − 0.5i)4-s + (0.670 + 0.387i)5-s + (0.707 + 0.707i)6-s + (−0.707 + 0.707i)8-s + (−0.748 − 0.200i)10-s + (0.261 − 0.150i)11-s + (−0.866 − 0.499i)12-s − 0.960i·13-s − 0.774i·15-s + (0.499 − 0.866i)16-s + (0.363 − 0.210i)17-s + (0.596 − 1.03i)19-s + 0.774·20-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.553 + 0.832i)\, \overline{\Lambda}(2-s) \end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.553 + 0.832i)\, \overline{\Lambda}(1-s) \end{aligned}

## Invariants

 Degree: $$2$$ Conductor: $$196$$    =    $$2^{2} \cdot 7^{2}$$ Sign: $0.553 + 0.832i$ Motivic weight: $$1$$ Character: $\chi_{196} (19, \cdot )$ Primitive: yes Self-dual: no Analytic rank: $$0$$ Selberg data: $$(2,\ 196,\ (\ :1/2),\ 0.553 + 0.832i)$$

## Particular Values

 $$L(1)$$ $$\approx$$ $$0.664758 - 0.356207i$$ $$L(\frac12)$$ $$\approx$$ $$0.664758 - 0.356207i$$ $$L(\frac{3}{2})$$ not available $$L(1)$$ not available

## Euler product

$$L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}$$
$p$$F_p(T)$
bad2 $$1 + (1.36 - 0.366i)T$$
7 $$1$$
good3 $$1 + (0.866 + 1.5i)T + (-1.5 + 2.59i)T^{2}$$
5 $$1 + (-1.5 - 0.866i)T + (2.5 + 4.33i)T^{2}$$
11 $$1 + (-0.866 + 0.5i)T + (5.5 - 9.52i)T^{2}$$
13 $$1 + 3.46iT - 13T^{2}$$
17 $$1 + (-1.5 + 0.866i)T + (8.5 - 14.7i)T^{2}$$
19 $$1 + (-2.59 + 4.5i)T + (-9.5 - 16.4i)T^{2}$$
23 $$1 + (-0.866 - 0.5i)T + (11.5 + 19.9i)T^{2}$$
29 $$1 - 4T + 29T^{2}$$
31 $$1 + (-0.866 - 1.5i)T + (-15.5 + 26.8i)T^{2}$$
37 $$1 + (1.5 - 2.59i)T + (-18.5 - 32.0i)T^{2}$$
41 $$1 - 3.46iT - 41T^{2}$$
43 $$1 + 2iT - 43T^{2}$$
47 $$1 + (4.33 - 7.5i)T + (-23.5 - 40.7i)T^{2}$$
53 $$1 + (-0.5 - 0.866i)T + (-26.5 + 45.8i)T^{2}$$
59 $$1 + (-2.59 - 4.5i)T + (-29.5 + 51.0i)T^{2}$$
61 $$1 + (-4.5 - 2.59i)T + (30.5 + 52.8i)T^{2}$$
67 $$1 + (-2.59 + 1.5i)T + (33.5 - 58.0i)T^{2}$$
71 $$1 - 14iT - 71T^{2}$$
73 $$1 + (7.5 - 4.33i)T + (36.5 - 63.2i)T^{2}$$
79 $$1 + (-7.79 - 4.5i)T + (39.5 + 68.4i)T^{2}$$
83 $$1 - 13.8T + 83T^{2}$$
89 $$1 + (13.5 + 7.79i)T + (44.5 + 77.0i)T^{2}$$
97 $$1 - 17.3iT - 97T^{2}$$
show less
$$L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}$$

## Imaginary part of the first few zeros on the critical line

−12.14469942421512230534909703327, −11.31390292320862864114643337305, −10.26268342033429524430766599388, −9.450890603626781246457357900185, −8.191299020182837639562663996814, −7.12961729600125241607792861492, −6.38658450215870992379121208599, −5.42710271713889409029199171721, −2.77137164377651728596220986912, −1.06675956187295801218069986067, 1.78396757973552578333510768553, 3.79688584054174697644332884819, 5.26238408978096231976593731906, 6.45062265678780178289965525418, 7.77953917178740500088383962357, 9.041128515753374920510891953853, 9.768341632818636771111848038472, 10.42902174285216948904302457704, 11.47572545873715318909783608070, 12.26437460544487810809447046465