Properties

Label 8-1950e4-1.1-c1e4-0-41
Degree $8$
Conductor $1.446\times 10^{13}$
Sign $1$
Analytic cond. $58782.3$
Root an. cond. $3.94598$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4-s + 9-s + 10·11-s − 4·19-s + 4·29-s − 8·31-s + 36-s − 20·41-s + 10·44-s + 2·49-s + 22·61-s − 64-s − 6·71-s − 4·76-s + 56·79-s − 20·89-s + 10·99-s − 16·101-s + 68·109-s + 4·116-s + 47·121-s − 8·124-s + 127-s + 131-s + 137-s + 139-s + 149-s + ⋯
L(s)  = 1  + 1/2·4-s + 1/3·9-s + 3.01·11-s − 0.917·19-s + 0.742·29-s − 1.43·31-s + 1/6·36-s − 3.12·41-s + 1.50·44-s + 2/7·49-s + 2.81·61-s − 1/8·64-s − 0.712·71-s − 0.458·76-s + 6.30·79-s − 2.11·89-s + 1.00·99-s − 1.59·101-s + 6.51·109-s + 0.371·116-s + 4.27·121-s − 0.718·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 5^{8} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 5^{8} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 3^{4} \cdot 5^{8} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(58782.3\)
Root analytic conductor: \(3.94598\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 3^{4} \cdot 5^{8} \cdot 13^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(7.428032125\)
\(L(\frac12)\) \(\approx\) \(7.428032125\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2^2$ \( 1 - T^{2} + T^{4} \)
3$C_2^2$ \( 1 - T^{2} + T^{4} \)
5 \( 1 \)
13$C_2^2$ \( 1 + 23 T^{2} + p^{2} T^{4} \)
good7$C_2^2$$\times$$C_2^2$ \( ( 1 - 13 T^{2} + p^{2} T^{4} )( 1 + 11 T^{2} + p^{2} T^{4} ) \)
11$C_2^2$ \( ( 1 - 5 T + 14 T^{2} - 5 p T^{3} + p^{2} T^{4} )^{2} \)
17$C_2^2$$\times$$C_2^2$ \( ( 1 - 8 T + 47 T^{2} - 8 p T^{3} + p^{2} T^{4} )( 1 + 8 T + 47 T^{2} + 8 p T^{3} + p^{2} T^{4} ) \)
19$C_2^2$ \( ( 1 + 2 T - 15 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
23$C_2^3$ \( 1 - 3 T^{2} - 520 T^{4} - 3 p^{2} T^{6} + p^{4} T^{8} \)
29$C_2^2$ \( ( 1 - 2 T - 25 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
31$C_2$ \( ( 1 + 2 T + p T^{2} )^{4} \)
37$C_2^3$ \( 1 + 65 T^{2} + 2856 T^{4} + 65 p^{2} T^{6} + p^{4} T^{8} \)
41$C_2^2$ \( ( 1 + 10 T + 59 T^{2} + 10 p T^{3} + p^{2} T^{4} )^{2} \)
43$C_2^3$ \( 1 + 70 T^{2} + 3051 T^{4} + 70 p^{2} T^{6} + p^{4} T^{8} \)
47$C_2^2$ \( ( 1 + 50 T^{2} + p^{2} T^{4} )^{2} \)
53$C_2$ \( ( 1 - p T^{2} )^{4} \)
59$C_2^2$ \( ( 1 - p T^{2} + p^{2} T^{4} )^{2} \)
61$C_2^2$ \( ( 1 - 11 T + 60 T^{2} - 11 p T^{3} + p^{2} T^{4} )^{2} \)
67$C_2^3$ \( 1 + 118 T^{2} + 9435 T^{4} + 118 p^{2} T^{6} + p^{4} T^{8} \)
71$C_2^2$ \( ( 1 + 3 T - 62 T^{2} + 3 p T^{3} + p^{2} T^{4} )^{2} \)
73$C_2^2$ \( ( 1 - 65 T^{2} + p^{2} T^{4} )^{2} \)
79$C_2$ \( ( 1 - 14 T + p T^{2} )^{4} \)
83$C_2^2$ \( ( 1 - 157 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 + 10 T + 11 T^{2} + 10 p T^{3} + p^{2} T^{4} )^{2} \)
97$C_2^3$ \( 1 + 25 T^{2} - 8784 T^{4} + 25 p^{2} T^{6} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.50674127507435493388120674563, −6.36636384229009668611591100939, −6.23497473850791954699406539573, −5.96209496310190102242585348402, −5.90623772704697366157656126396, −5.40432361788378295652217242739, −5.10365632238394575865161866739, −5.08777163963666586914039413751, −4.97868449131933576665692568070, −4.50478007217897186720030307842, −4.30546948913940443878119434557, −4.02320849731883608034976185900, −3.88114173349693897532228854474, −3.81211176272573082227189862131, −3.35103532621035465338961479715, −3.25792131650091172032139843810, −3.14959504062099845945697567533, −2.61410593988634643925066812758, −2.13931431218223168429903542002, −1.97218003112051893572499059602, −1.85059122588452714682700881461, −1.67745040428448953757987391605, −1.15353378342077417082246392123, −0.69366778245705257517750991252, −0.58433701139004941728636040394, 0.58433701139004941728636040394, 0.69366778245705257517750991252, 1.15353378342077417082246392123, 1.67745040428448953757987391605, 1.85059122588452714682700881461, 1.97218003112051893572499059602, 2.13931431218223168429903542002, 2.61410593988634643925066812758, 3.14959504062099845945697567533, 3.25792131650091172032139843810, 3.35103532621035465338961479715, 3.81211176272573082227189862131, 3.88114173349693897532228854474, 4.02320849731883608034976185900, 4.30546948913940443878119434557, 4.50478007217897186720030307842, 4.97868449131933576665692568070, 5.08777163963666586914039413751, 5.10365632238394575865161866739, 5.40432361788378295652217242739, 5.90623772704697366157656126396, 5.96209496310190102242585348402, 6.23497473850791954699406539573, 6.36636384229009668611591100939, 6.50674127507435493388120674563

Graph of the $Z$-function along the critical line