| L(s) = 1 | + (−0.5 + 0.866i)2-s + (−0.866 − 0.5i)3-s + (−0.499 − 0.866i)4-s + (0.866 − 0.499i)6-s + (−2.36 − 4.09i)7-s + 0.999·8-s + (0.499 + 0.866i)9-s + (4.09 + 2.36i)11-s + 0.999i·12-s + (0.232 + 3.59i)13-s + 4.73·14-s + (−0.5 + 0.866i)16-s + (4.5 − 2.59i)17-s − 0.999·18-s + (−1.09 + 0.633i)19-s + ⋯ |
| L(s) = 1 | + (−0.353 + 0.612i)2-s + (−0.499 − 0.288i)3-s + (−0.249 − 0.433i)4-s + (0.353 − 0.204i)6-s + (−0.894 − 1.54i)7-s + 0.353·8-s + (0.166 + 0.288i)9-s + (1.23 + 0.713i)11-s + 0.288i·12-s + (0.0643 + 0.997i)13-s + 1.26·14-s + (−0.125 + 0.216i)16-s + (1.09 − 0.630i)17-s − 0.235·18-s + (−0.251 + 0.145i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1950 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.926 + 0.376i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1950 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.926 + 0.376i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.051798640\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.051798640\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (0.5 - 0.866i)T \) |
| 3 | \( 1 + (0.866 + 0.5i)T \) |
| 5 | \( 1 \) |
| 13 | \( 1 + (-0.232 - 3.59i)T \) |
| good | 7 | \( 1 + (2.36 + 4.09i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-4.09 - 2.36i)T + (5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-4.5 + 2.59i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (1.09 - 0.633i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (1.90 + 1.09i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (1.5 - 2.59i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 2.53iT - 31T^{2} \) |
| 37 | \( 1 + (1.5 - 2.59i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-0.401 - 0.232i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-5.36 + 3.09i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 1.26T + 47T^{2} \) |
| 53 | \( 1 + 3iT - 53T^{2} \) |
| 59 | \( 1 + (-12 + 6.92i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (2.40 + 4.16i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-5.36 + 9.29i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-7.09 + 4.09i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 - 12.1T + 73T^{2} \) |
| 79 | \( 1 - 12.3T + 79T^{2} \) |
| 83 | \( 1 + 11.6T + 83T^{2} \) |
| 89 | \( 1 + (2.19 + 1.26i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-3 - 5.19i)T + (-48.5 + 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.420258365713734504812222219261, −8.167649184173291132643043013854, −7.28790159566739027906259251633, −6.77144341889434562095372723233, −6.41384542843255476010328739160, −5.18337641443156932935946125744, −4.22674022738484233140536031448, −3.56821306658274984288432855440, −1.70598090187077076039991618599, −0.65257488186604479019493813770,
0.899895902825374714813872590449, 2.36053324898845470639438050208, 3.33767152909756901003176324416, 3.99937605032833357132516089858, 5.54174790402080838891615237606, 5.81532075590722478644480351391, 6.69025809877059780457286066386, 7.969348858532398374554499357468, 8.659947645627630116909979994589, 9.384028507150076104504480761300