| L(s) = 1 | + (0.866 − 0.5i)2-s + (0.5 + 0.866i)3-s + (0.499 − 0.866i)4-s + (0.866 + 0.499i)6-s + (−3.76 − 2.17i)7-s − 0.999i·8-s + (−0.499 + 0.866i)9-s + (−2.04 + 1.17i)11-s + 0.999·12-s + (1.69 + 3.18i)13-s − 4.34·14-s + (−0.5 − 0.866i)16-s + (−1.50 + 2.60i)17-s + 0.999i·18-s + (−0.585 − 0.338i)19-s + ⋯ |
| L(s) = 1 | + (0.612 − 0.353i)2-s + (0.288 + 0.499i)3-s + (0.249 − 0.433i)4-s + (0.353 + 0.204i)6-s + (−1.42 − 0.821i)7-s − 0.353i·8-s + (−0.166 + 0.288i)9-s + (−0.615 + 0.355i)11-s + 0.288·12-s + (0.469 + 0.883i)13-s − 1.16·14-s + (−0.125 − 0.216i)16-s + (−0.364 + 0.631i)17-s + 0.235i·18-s + (−0.134 − 0.0776i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1950 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.457 - 0.889i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1950 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.457 - 0.889i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.9740597210\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.9740597210\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-0.866 + 0.5i)T \) |
| 3 | \( 1 + (-0.5 - 0.866i)T \) |
| 5 | \( 1 \) |
| 13 | \( 1 + (-1.69 - 3.18i)T \) |
| good | 7 | \( 1 + (3.76 + 2.17i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (2.04 - 1.17i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (1.50 - 2.60i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (0.585 + 0.338i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-3.22 - 5.58i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (4.82 + 8.35i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 7.11iT - 31T^{2} \) |
| 37 | \( 1 + (6.48 - 3.74i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (2.60 - 1.50i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (3.41 - 5.91i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 - 5.61iT - 47T^{2} \) |
| 53 | \( 1 + 9.43T + 53T^{2} \) |
| 59 | \( 1 + (-4.56 - 2.63i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-2.15 + 3.73i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-5.04 + 2.91i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-2.52 - 1.45i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 7.67iT - 73T^{2} \) |
| 79 | \( 1 - 3.74T + 79T^{2} \) |
| 83 | \( 1 + 10.3iT - 83T^{2} \) |
| 89 | \( 1 + (4.15 - 2.39i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (14.1 + 8.17i)T + (48.5 + 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.703796906551048901966168568015, −8.893339020884655077259278714152, −7.80991453847686654919145066784, −6.85590838206776665144981171837, −6.32983424169353980117017832560, −5.26704464773538140342161261171, −4.31622391799033002518636751681, −3.63106675412424160452059355394, −2.93951509813445098967979435560, −1.63163441214780115204665154170,
0.25278323720317297032762670499, 2.26351845946897083304766377945, 3.05175144147053173870901135048, 3.68542992275688587151208679266, 5.20091096263996294798150260812, 5.69373536355545884829545220101, 6.62330950254140969037261027991, 7.08242157238842790714464552373, 8.183662948297653733631441737867, 8.775595472107849290409648308866