Properties

Degree $2$
Conductor $195$
Sign $1$
Motivic weight $1$
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s − 4-s + 5-s − 6-s + 3·8-s + 9-s − 10-s + 4·11-s − 12-s + 13-s + 15-s − 16-s + 2·17-s − 18-s − 4·19-s − 20-s − 4·22-s + 8·23-s + 3·24-s + 25-s − 26-s + 27-s − 2·29-s − 30-s − 8·31-s − 5·32-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s − 1/2·4-s + 0.447·5-s − 0.408·6-s + 1.06·8-s + 1/3·9-s − 0.316·10-s + 1.20·11-s − 0.288·12-s + 0.277·13-s + 0.258·15-s − 1/4·16-s + 0.485·17-s − 0.235·18-s − 0.917·19-s − 0.223·20-s − 0.852·22-s + 1.66·23-s + 0.612·24-s + 1/5·25-s − 0.196·26-s + 0.192·27-s − 0.371·29-s − 0.182·30-s − 1.43·31-s − 0.883·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 195 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 195 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(195\)    =    \(3 \cdot 5 \cdot 13\)
Sign: $1$
Motivic weight: \(1\)
Character: $\chi_{195} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 195,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.00571\)
\(L(\frac12)\) \(\approx\) \(1.00571\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
5 \( 1 - T \)
13 \( 1 - T \)
good2 \( 1 + T + p T^{2} \)
7 \( 1 + p T^{2} \)
11 \( 1 - 4 T + p T^{2} \)
17 \( 1 - 2 T + p T^{2} \)
19 \( 1 + 4 T + p T^{2} \)
23 \( 1 - 8 T + p T^{2} \)
29 \( 1 + 2 T + p T^{2} \)
31 \( 1 + 8 T + p T^{2} \)
37 \( 1 - 6 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 + 8 T + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 + 12 T + p T^{2} \)
61 \( 1 + 2 T + p T^{2} \)
67 \( 1 + 4 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 + 6 T + p T^{2} \)
79 \( 1 - 16 T + p T^{2} \)
83 \( 1 + 4 T + p T^{2} \)
89 \( 1 - 10 T + p T^{2} \)
97 \( 1 - 18 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.77225124673051249378365373349, −11.29973861776916647091210481223, −10.27202750242873477109491112735, −9.244674050330195584769830754850, −8.846234947699956116857977484454, −7.66093767427808108694408525270, −6.48654966834348628333399350819, −4.88823595164803979266926983864, −3.56799192480000330057521215275, −1.53827946418072491307494025034, 1.53827946418072491307494025034, 3.56799192480000330057521215275, 4.88823595164803979266926983864, 6.48654966834348628333399350819, 7.66093767427808108694408525270, 8.846234947699956116857977484454, 9.244674050330195584769830754850, 10.27202750242873477109491112735, 11.29973861776916647091210481223, 12.77225124673051249378365373349

Graph of the $Z$-function along the critical line