Properties

Label 4-1944e2-1.1-c0e2-0-0
Degree $4$
Conductor $3779136$
Sign $1$
Analytic cond. $0.941253$
Root an. cond. $0.984978$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·13-s − 2·19-s − 2·31-s + 2·43-s − 2·49-s + 2·61-s − 2·67-s + 2·73-s + 2·79-s − 2·97-s + 2·103-s + 2·109-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 169-s + 173-s + 179-s + 181-s + 191-s + 193-s + ⋯
L(s)  = 1  + 2·13-s − 2·19-s − 2·31-s + 2·43-s − 2·49-s + 2·61-s − 2·67-s + 2·73-s + 2·79-s − 2·97-s + 2·103-s + 2·109-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 169-s + 173-s + 179-s + 181-s + 191-s + 193-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3779136 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3779136 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(3779136\)    =    \(2^{6} \cdot 3^{10}\)
Sign: $1$
Analytic conductor: \(0.941253\)
Root analytic conductor: \(0.984978\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 3779136,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.202009576\)
\(L(\frac12)\) \(\approx\) \(1.202009576\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$C_2^2$ \( 1 + T^{4} \)
7$C_2$ \( ( 1 + T^{2} )^{2} \)
11$C_2^2$ \( 1 + T^{4} \)
13$C_2$ \( ( 1 - T + T^{2} )^{2} \)
17$C_2^2$ \( 1 + T^{4} \)
19$C_2$ \( ( 1 + T + T^{2} )^{2} \)
23$C_2^2$ \( 1 + T^{4} \)
29$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
31$C_2$ \( ( 1 + T + T^{2} )^{2} \)
37$C_2$ \( ( 1 + T^{2} )^{2} \)
41$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
43$C_2$ \( ( 1 - T + T^{2} )^{2} \)
47$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
53$C_2^2$ \( 1 + T^{4} \)
59$C_2^2$ \( 1 + T^{4} \)
61$C_2$ \( ( 1 - T + T^{2} )^{2} \)
67$C_2$ \( ( 1 + T + T^{2} )^{2} \)
71$C_2^2$ \( 1 + T^{4} \)
73$C_2$ \( ( 1 - T + T^{2} )^{2} \)
79$C_2$ \( ( 1 - T + T^{2} )^{2} \)
83$C_2^2$ \( 1 + T^{4} \)
89$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
97$C_2$ \( ( 1 + T + T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.573243202668337204861428860891, −8.987129602501258249038015090450, −8.800539897295006893726190109579, −8.519543626831669197298280336708, −8.078500867031149834205514057112, −7.66356395948192751359859249137, −7.28209321333657416534071415815, −6.55623339616343309362604077027, −6.54547058168710754302432808774, −5.99662915432129118686496093463, −5.72350307363656571052338342490, −5.19582091798717778783100990677, −4.62147982372416173750603605302, −4.18809200065074855229515401565, −3.67935020901390904550870884872, −3.54198703495389148907683921513, −2.77944343197474956611119945110, −2.00262217531102882676359375349, −1.80286987544936973970745573275, −0.826746484795851843203846911133, 0.826746484795851843203846911133, 1.80286987544936973970745573275, 2.00262217531102882676359375349, 2.77944343197474956611119945110, 3.54198703495389148907683921513, 3.67935020901390904550870884872, 4.18809200065074855229515401565, 4.62147982372416173750603605302, 5.19582091798717778783100990677, 5.72350307363656571052338342490, 5.99662915432129118686496093463, 6.54547058168710754302432808774, 6.55623339616343309362604077027, 7.28209321333657416534071415815, 7.66356395948192751359859249137, 8.078500867031149834205514057112, 8.519543626831669197298280336708, 8.800539897295006893726190109579, 8.987129602501258249038015090450, 9.573243202668337204861428860891

Graph of the $Z$-function along the critical line