Properties

Label 4-44e4-1.1-c3e2-0-2
Degree $4$
Conductor $3748096$
Sign $1$
Analytic cond. $13047.9$
Root an. cond. $10.6877$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 2·5-s + 20·7-s − 3·9-s − 80·13-s + 4·15-s + 124·17-s + 72·19-s + 40·21-s + 98·23-s − 55·25-s + 34·27-s − 144·29-s + 34·31-s + 40·35-s + 54·37-s − 160·39-s − 536·41-s − 60·43-s − 6·45-s + 272·47-s − 338·49-s + 248·51-s − 492·53-s + 144·57-s − 634·59-s − 840·61-s + ⋯
L(s)  = 1  + 0.384·3-s + 0.178·5-s + 1.07·7-s − 1/9·9-s − 1.70·13-s + 0.0688·15-s + 1.76·17-s + 0.869·19-s + 0.415·21-s + 0.888·23-s − 0.439·25-s + 0.242·27-s − 0.922·29-s + 0.196·31-s + 0.193·35-s + 0.239·37-s − 0.656·39-s − 2.04·41-s − 0.212·43-s − 0.0198·45-s + 0.844·47-s − 0.985·49-s + 0.680·51-s − 1.27·53-s + 0.334·57-s − 1.39·59-s − 1.76·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3748096 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3748096 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(3748096\)    =    \(2^{8} \cdot 11^{4}\)
Sign: $1$
Analytic conductor: \(13047.9\)
Root analytic conductor: \(10.6877\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 3748096,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.304772998\)
\(L(\frac12)\) \(\approx\) \(2.304772998\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
11 \( 1 \)
good3$D_{4}$ \( 1 - 2 T + 7 T^{2} - 2 p^{3} T^{3} + p^{6} T^{4} \)
5$D_{4}$ \( 1 - 2 T + 59 T^{2} - 2 p^{3} T^{3} + p^{6} T^{4} \)
7$D_{4}$ \( 1 - 20 T + 738 T^{2} - 20 p^{3} T^{3} + p^{6} T^{4} \)
13$D_{4}$ \( 1 + 80 T + 4794 T^{2} + 80 p^{3} T^{3} + p^{6} T^{4} \)
17$D_{4}$ \( 1 - 124 T + 13238 T^{2} - 124 p^{3} T^{3} + p^{6} T^{4} \)
19$D_{4}$ \( 1 - 72 T + 4214 T^{2} - 72 p^{3} T^{3} + p^{6} T^{4} \)
23$D_{4}$ \( 1 - 98 T + 22847 T^{2} - 98 p^{3} T^{3} + p^{6} T^{4} \)
29$D_{4}$ \( 1 + 144 T + 44554 T^{2} + 144 p^{3} T^{3} + p^{6} T^{4} \)
31$D_{4}$ \( 1 - 34 T + 57519 T^{2} - 34 p^{3} T^{3} + p^{6} T^{4} \)
37$D_{4}$ \( 1 - 54 T + 101843 T^{2} - 54 p^{3} T^{3} + p^{6} T^{4} \)
41$D_{4}$ \( 1 + 536 T + 209618 T^{2} + 536 p^{3} T^{3} + p^{6} T^{4} \)
43$D_{4}$ \( 1 + 60 T + 159146 T^{2} + 60 p^{3} T^{3} + p^{6} T^{4} \)
47$D_{4}$ \( 1 - 272 T + 182942 T^{2} - 272 p^{3} T^{3} + p^{6} T^{4} \)
53$D_{4}$ \( 1 + 492 T + 348862 T^{2} + 492 p^{3} T^{3} + p^{6} T^{4} \)
59$D_{4}$ \( 1 + 634 T + 458975 T^{2} + 634 p^{3} T^{3} + p^{6} T^{4} \)
61$D_{4}$ \( 1 + 840 T + 528794 T^{2} + 840 p^{3} T^{3} + p^{6} T^{4} \)
67$D_{4}$ \( 1 + 754 T + 742455 T^{2} + 754 p^{3} T^{3} + p^{6} T^{4} \)
71$D_{4}$ \( 1 - 678 T + 813415 T^{2} - 678 p^{3} T^{3} + p^{6} T^{4} \)
73$D_{4}$ \( 1 - 400 T + 160962 T^{2} - 400 p^{3} T^{3} + p^{6} T^{4} \)
79$D_{4}$ \( 1 - 4 p T - 279966 T^{2} - 4 p^{4} T^{3} + p^{6} T^{4} \)
83$D_{4}$ \( 1 - 468 T + 1155130 T^{2} - 468 p^{3} T^{3} + p^{6} T^{4} \)
89$D_{4}$ \( 1 + 1842 T + 1935427 T^{2} + 1842 p^{3} T^{3} + p^{6} T^{4} \)
97$D_{4}$ \( 1 - 2194 T + 2966547 T^{2} - 2194 p^{3} T^{3} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.073478652187552645013872380145, −8.668713830052756996166413469618, −8.069314004067824914806206309027, −7.80878109021053799219106734312, −7.48604242322138054949041497653, −7.45080514712445211517017587853, −6.57455903811688613081368899303, −6.43763001295170525340536432752, −5.54575749685884778098253193593, −5.45427272135073727085918762021, −4.86113263282202880941353226033, −4.84327047937048172837008824224, −4.15727169933013926277915421826, −3.46855031830109943323308114556, −2.97455361230639991442361831714, −2.91515309100638842056793562219, −1.96215967843596157881545104610, −1.62394600337126027494968317020, −1.17092688024732954744769123660, −0.30415693869859700859173998442, 0.30415693869859700859173998442, 1.17092688024732954744769123660, 1.62394600337126027494968317020, 1.96215967843596157881545104610, 2.91515309100638842056793562219, 2.97455361230639991442361831714, 3.46855031830109943323308114556, 4.15727169933013926277915421826, 4.84327047937048172837008824224, 4.86113263282202880941353226033, 5.45427272135073727085918762021, 5.54575749685884778098253193593, 6.43763001295170525340536432752, 6.57455903811688613081368899303, 7.45080514712445211517017587853, 7.48604242322138054949041497653, 7.80878109021053799219106734312, 8.069314004067824914806206309027, 8.668713830052756996166413469618, 9.073478652187552645013872380145

Graph of the $Z$-function along the critical line