Properties

Label 2-44e2-1.1-c3-0-66
Degree $2$
Conductor $1936$
Sign $1$
Analytic cond. $114.227$
Root an. cond. $10.6877$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8.54·3-s + 12.7·5-s + 23.4·7-s + 46.0·9-s − 11.4·13-s − 108.·15-s + 65.5·17-s − 7.25·19-s − 200.·21-s + 104.·23-s + 37.2·25-s − 162.·27-s + 127.·29-s + 288.·31-s + 298.·35-s − 85.4·37-s + 97.9·39-s + 135.·41-s + 353.·43-s + 586.·45-s + 134.·47-s + 207.·49-s − 559.·51-s + 501.·53-s + 61.9·57-s − 651.·59-s − 365.·61-s + ⋯
L(s)  = 1  − 1.64·3-s + 1.13·5-s + 1.26·7-s + 1.70·9-s − 0.244·13-s − 1.87·15-s + 0.934·17-s − 0.0875·19-s − 2.08·21-s + 0.943·23-s + 0.297·25-s − 1.15·27-s + 0.815·29-s + 1.67·31-s + 1.44·35-s − 0.379·37-s + 0.402·39-s + 0.515·41-s + 1.25·43-s + 1.94·45-s + 0.417·47-s + 0.604·49-s − 1.53·51-s + 1.29·53-s + 0.143·57-s − 1.43·59-s − 0.767·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1936 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1936\)    =    \(2^{4} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(114.227\)
Root analytic conductor: \(10.6877\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1936,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.153122645\)
\(L(\frac12)\) \(\approx\) \(2.153122645\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
11 \( 1 \)
good3 \( 1 + 8.54T + 27T^{2} \)
5 \( 1 - 12.7T + 125T^{2} \)
7 \( 1 - 23.4T + 343T^{2} \)
13 \( 1 + 11.4T + 2.19e3T^{2} \)
17 \( 1 - 65.5T + 4.91e3T^{2} \)
19 \( 1 + 7.25T + 6.85e3T^{2} \)
23 \( 1 - 104.T + 1.21e4T^{2} \)
29 \( 1 - 127.T + 2.43e4T^{2} \)
31 \( 1 - 288.T + 2.97e4T^{2} \)
37 \( 1 + 85.4T + 5.06e4T^{2} \)
41 \( 1 - 135.T + 6.89e4T^{2} \)
43 \( 1 - 353.T + 7.95e4T^{2} \)
47 \( 1 - 134.T + 1.03e5T^{2} \)
53 \( 1 - 501.T + 1.48e5T^{2} \)
59 \( 1 + 651.T + 2.05e5T^{2} \)
61 \( 1 + 365.T + 2.26e5T^{2} \)
67 \( 1 - 294.T + 3.00e5T^{2} \)
71 \( 1 + 132.T + 3.57e5T^{2} \)
73 \( 1 + 469.T + 3.89e5T^{2} \)
79 \( 1 - 408.T + 4.93e5T^{2} \)
83 \( 1 + 1.35e3T + 5.71e5T^{2} \)
89 \( 1 + 260.T + 7.04e5T^{2} \)
97 \( 1 - 1.41e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.941999499081796721037679532030, −7.918359138797018218080862476053, −7.08485782067964243953190288640, −6.19152442675581220367093914162, −5.64362300561275791647401935619, −4.97743521612482238104904821186, −4.38151959591655968317545807321, −2.67272431871954971370344091852, −1.47611102496785195145024188022, −0.835491562791308518257955501609, 0.835491562791308518257955501609, 1.47611102496785195145024188022, 2.67272431871954971370344091852, 4.38151959591655968317545807321, 4.97743521612482238104904821186, 5.64362300561275791647401935619, 6.19152442675581220367093914162, 7.08485782067964243953190288640, 7.918359138797018218080862476053, 8.941999499081796721037679532030

Graph of the $Z$-function along the critical line