Properties

Label 4-192e2-1.1-c7e2-0-4
Degree $4$
Conductor $36864$
Sign $1$
Analytic cond. $3597.35$
Root an. cond. $7.74454$
Motivic weight $7$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 54·3-s + 28·5-s − 936·7-s + 2.18e3·9-s − 3.38e3·11-s + 1.70e4·13-s − 1.51e3·15-s − 1.86e4·17-s + 4.48e4·19-s + 5.05e4·21-s − 4.34e4·23-s − 3.12e4·25-s − 7.87e4·27-s + 1.94e4·29-s − 3.32e5·31-s + 1.82e5·33-s − 2.62e4·35-s + 9.07e3·37-s − 9.22e5·39-s + 4.91e5·41-s + 5.10e5·43-s + 6.12e4·45-s − 1.78e6·47-s − 3.12e5·49-s + 1.00e6·51-s + 1.39e6·53-s − 9.47e4·55-s + ⋯
L(s)  = 1  − 1.15·3-s + 0.100·5-s − 1.03·7-s + 9-s − 0.766·11-s + 2.15·13-s − 0.115·15-s − 0.921·17-s + 1.50·19-s + 1.19·21-s − 0.745·23-s − 0.399·25-s − 0.769·27-s + 0.148·29-s − 2.00·31-s + 0.885·33-s − 0.103·35-s + 0.0294·37-s − 2.48·39-s + 1.11·41-s + 0.980·43-s + 0.100·45-s − 2.50·47-s − 0.379·49-s + 1.06·51-s + 1.28·53-s − 0.0767·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 36864 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 36864 ^{s/2} \, \Gamma_{\C}(s+7/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(36864\)    =    \(2^{12} \cdot 3^{2}\)
Sign: $1$
Analytic conductor: \(3597.35\)
Root analytic conductor: \(7.74454\)
Motivic weight: \(7\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 36864,\ (\ :7/2, 7/2),\ 1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( ( 1 + p^{3} T )^{2} \)
good5$D_{4}$ \( 1 - 28 T + 6406 p T^{2} - 28 p^{7} T^{3} + p^{14} T^{4} \)
7$D_{4}$ \( 1 + 936 T + 1188734 T^{2} + 936 p^{7} T^{3} + p^{14} T^{4} \)
11$D_{4}$ \( 1 + 3384 T + 12585622 T^{2} + 3384 p^{7} T^{3} + p^{14} T^{4} \)
13$D_{4}$ \( 1 - 17076 T + 174008942 T^{2} - 17076 p^{7} T^{3} + p^{14} T^{4} \)
17$D_{4}$ \( 1 + 18668 T + 763976006 T^{2} + 18668 p^{7} T^{3} + p^{14} T^{4} \)
19$D_{4}$ \( 1 - 44856 T + 2237619206 T^{2} - 44856 p^{7} T^{3} + p^{14} T^{4} \)
23$D_{4}$ \( 1 + 43488 T + 1865158606 T^{2} + 43488 p^{7} T^{3} + p^{14} T^{4} \)
29$D_{4}$ \( 1 - 19484 T + 563275118 T^{2} - 19484 p^{7} T^{3} + p^{14} T^{4} \)
31$D_{4}$ \( 1 + 332856 T + 60250867406 T^{2} + 332856 p^{7} T^{3} + p^{14} T^{4} \)
37$D_{4}$ \( 1 - 9076 T + 83660952894 T^{2} - 9076 p^{7} T^{3} + p^{14} T^{4} \)
41$D_{4}$ \( 1 - 491780 T + 442441281206 T^{2} - 491780 p^{7} T^{3} + p^{14} T^{4} \)
43$D_{4}$ \( 1 - 510984 T + 247939713878 T^{2} - 510984 p^{7} T^{3} + p^{14} T^{4} \)
47$D_{4}$ \( 1 + 1781424 T + 1786374389470 T^{2} + 1781424 p^{7} T^{3} + p^{14} T^{4} \)
53$D_{4}$ \( 1 - 1395692 T + 2682288635486 T^{2} - 1395692 p^{7} T^{3} + p^{14} T^{4} \)
59$D_{4}$ \( 1 - 1534104 T + 5559576794038 T^{2} - 1534104 p^{7} T^{3} + p^{14} T^{4} \)
61$D_{4}$ \( 1 + 1592188 T + 6774132506478 T^{2} + 1592188 p^{7} T^{3} + p^{14} T^{4} \)
67$D_{4}$ \( 1 + 1169496 T - 1041831063514 T^{2} + 1169496 p^{7} T^{3} + p^{14} T^{4} \)
71$D_{4}$ \( 1 + 5716800 T + 23877712415086 T^{2} + 5716800 p^{7} T^{3} + p^{14} T^{4} \)
73$D_{4}$ \( 1 - 1180884 T + 15089768314454 T^{2} - 1180884 p^{7} T^{3} + p^{14} T^{4} \)
79$D_{4}$ \( 1 + 6538104 T + 48301289191022 T^{2} + 6538104 p^{7} T^{3} + p^{14} T^{4} \)
83$D_{4}$ \( 1 + 16805160 T + 122017660191238 T^{2} + 16805160 p^{7} T^{3} + p^{14} T^{4} \)
89$D_{4}$ \( 1 + 6118924 T + 91061417808758 T^{2} + 6118924 p^{7} T^{3} + p^{14} T^{4} \)
97$D_{4}$ \( 1 - 23720868 T + 287915376622982 T^{2} - 23720868 p^{7} T^{3} + p^{14} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.14646593487165981350160035829, −10.52928043253335344299832105621, −10.09261273768634625519763126852, −9.708766750903103146061290951339, −8.853766085694663127367934332651, −8.804858774849473182387272941986, −7.66224334059995851659278257446, −7.49764386044348888832843548818, −6.60924320832307520374685237766, −6.29960472513332279358358937564, −5.61863932145410744980402787626, −5.56358033686033007544496644508, −4.56207958852901442730845078202, −3.89026168484771206369926630970, −3.42324934429685903597654080596, −2.64388946919992546141170401693, −1.58872695378975618013156499611, −1.13287819142144672799856266170, 0, 0, 1.13287819142144672799856266170, 1.58872695378975618013156499611, 2.64388946919992546141170401693, 3.42324934429685903597654080596, 3.89026168484771206369926630970, 4.56207958852901442730845078202, 5.56358033686033007544496644508, 5.61863932145410744980402787626, 6.29960472513332279358358937564, 6.60924320832307520374685237766, 7.49764386044348888832843548818, 7.66224334059995851659278257446, 8.804858774849473182387272941986, 8.853766085694663127367934332651, 9.708766750903103146061290951339, 10.09261273768634625519763126852, 10.52928043253335344299832105621, 11.14646593487165981350160035829

Graph of the $Z$-function along the critical line