Properties

Label 4-192e2-1.1-c7e2-0-0
Degree $4$
Conductor $36864$
Sign $1$
Analytic cond. $3597.35$
Root an. cond. $7.74454$
Motivic weight $7$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 54·3-s − 180·5-s + 1.03e3·7-s + 2.18e3·9-s − 2.84e3·11-s + 340·13-s + 9.72e3·15-s + 9.78e3·17-s − 3.20e4·19-s − 5.57e4·21-s + 1.11e4·23-s − 7.17e4·25-s − 7.87e4·27-s − 3.04e5·29-s − 7.76e4·31-s + 1.53e5·33-s − 1.85e5·35-s − 1.01e6·37-s − 1.83e4·39-s + 7.04e5·41-s + 3.95e5·43-s − 3.93e5·45-s + 1.15e6·47-s + 6.55e5·49-s − 5.28e5·51-s − 1.56e6·53-s + 5.11e5·55-s + ⋯
L(s)  = 1  − 1.15·3-s − 0.643·5-s + 1.13·7-s + 9-s − 0.643·11-s + 0.0429·13-s + 0.743·15-s + 0.482·17-s − 1.07·19-s − 1.31·21-s + 0.190·23-s − 0.918·25-s − 0.769·27-s − 2.31·29-s − 0.468·31-s + 0.742·33-s − 0.732·35-s − 3.29·37-s − 0.0495·39-s + 1.59·41-s + 0.758·43-s − 0.643·45-s + 1.62·47-s + 0.796·49-s − 0.557·51-s − 1.44·53-s + 0.414·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 36864 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 36864 ^{s/2} \, \Gamma_{\C}(s+7/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(36864\)    =    \(2^{12} \cdot 3^{2}\)
Sign: $1$
Analytic conductor: \(3597.35\)
Root analytic conductor: \(7.74454\)
Motivic weight: \(7\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 36864,\ (\ :7/2, 7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(0.03728763189\)
\(L(\frac12)\) \(\approx\) \(0.03728763189\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( ( 1 + p^{3} T )^{2} \)
good5$D_{4}$ \( 1 + 36 p T + 20838 p T^{2} + 36 p^{8} T^{3} + p^{14} T^{4} \)
7$D_{4}$ \( 1 - 1032 T + 409342 T^{2} - 1032 p^{7} T^{3} + p^{14} T^{4} \)
11$D_{4}$ \( 1 + 2840 T + 38824982 T^{2} + 2840 p^{7} T^{3} + p^{14} T^{4} \)
13$D_{4}$ \( 1 - 340 T + 19403694 T^{2} - 340 p^{7} T^{3} + p^{14} T^{4} \)
17$D_{4}$ \( 1 - 9780 T + 478576006 T^{2} - 9780 p^{7} T^{3} + p^{14} T^{4} \)
19$D_{4}$ \( 1 + 32040 T + 1749599878 T^{2} + 32040 p^{7} T^{3} + p^{14} T^{4} \)
23$D_{4}$ \( 1 - 11136 T + 289229518 T^{2} - 11136 p^{7} T^{3} + p^{14} T^{4} \)
29$D_{4}$ \( 1 + 304212 T + 57634483854 T^{2} + 304212 p^{7} T^{3} + p^{14} T^{4} \)
31$D_{4}$ \( 1 + 77640 T + 1538948722 p T^{2} + 77640 p^{7} T^{3} + p^{14} T^{4} \)
37$D_{4}$ \( 1 + 1015820 T + 447827659326 T^{2} + 1015820 p^{7} T^{3} + p^{14} T^{4} \)
41$D_{4}$ \( 1 - 704100 T + 449624006262 T^{2} - 704100 p^{7} T^{3} + p^{14} T^{4} \)
43$D_{4}$ \( 1 - 395496 T + 503179893718 T^{2} - 395496 p^{7} T^{3} + p^{14} T^{4} \)
47$D_{4}$ \( 1 - 1157488 T + 1172277002462 T^{2} - 1157488 p^{7} T^{3} + p^{14} T^{4} \)
53$D_{4}$ \( 1 + 1568580 T + 2748040766334 T^{2} + 1568580 p^{7} T^{3} + p^{14} T^{4} \)
59$D_{4}$ \( 1 + 40 p^{2} T + 1925517532598 T^{2} + 40 p^{9} T^{3} + p^{14} T^{4} \)
61$D_{4}$ \( 1 + 2603580 T + 5065896220142 T^{2} + 2603580 p^{7} T^{3} + p^{14} T^{4} \)
67$D_{4}$ \( 1 - 5289768 T + 18885723928102 T^{2} - 5289768 p^{7} T^{3} + p^{14} T^{4} \)
71$D_{4}$ \( 1 - 5721760 T + 24709125868142 T^{2} - 5721760 p^{7} T^{3} + p^{14} T^{4} \)
73$D_{4}$ \( 1 + 1190700 T + 17205639157334 T^{2} + 1190700 p^{7} T^{3} + p^{14} T^{4} \)
79$D_{4}$ \( 1 + 398280 T + 21875776506478 T^{2} + 398280 p^{7} T^{3} + p^{14} T^{4} \)
83$D_{4}$ \( 1 - 6986616 T + 48072352746118 T^{2} - 6986616 p^{7} T^{3} + p^{14} T^{4} \)
89$D_{4}$ \( 1 + 8166732 T + 74896738657014 T^{2} + 8166732 p^{7} T^{3} + p^{14} T^{4} \)
97$D_{4}$ \( 1 + 10361500 T + 164015274574086 T^{2} + 10361500 p^{7} T^{3} + p^{14} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.26040570804327509994363585302, −11.13530205436602705172394079036, −10.61706243913378350429667707848, −10.42022227237941806850898957050, −9.354645946453776336684718821393, −9.211773493130211991143738636537, −8.195913969648563519731102312050, −8.009741163420491602537835968433, −7.20379990572559263344193492047, −7.19806969024347981369539628025, −6.09128434337858793643556896668, −5.70389053652259979213004783212, −5.15454827521689041947029312230, −4.74167298248039190523714896813, −3.77238977930306924340965385370, −3.76508115615331126306172884048, −2.29434310319989870698830112531, −1.83199746787973461252024969437, −1.05926535406586398750126083743, −0.05851877363439634932366719804, 0.05851877363439634932366719804, 1.05926535406586398750126083743, 1.83199746787973461252024969437, 2.29434310319989870698830112531, 3.76508115615331126306172884048, 3.77238977930306924340965385370, 4.74167298248039190523714896813, 5.15454827521689041947029312230, 5.70389053652259979213004783212, 6.09128434337858793643556896668, 7.19806969024347981369539628025, 7.20379990572559263344193492047, 8.009741163420491602537835968433, 8.195913969648563519731102312050, 9.211773493130211991143738636537, 9.354645946453776336684718821393, 10.42022227237941806850898957050, 10.61706243913378350429667707848, 11.13530205436602705172394079036, 11.26040570804327509994363585302

Graph of the $Z$-function along the critical line