Properties

Label 4-192e2-1.1-c6e2-0-2
Degree $4$
Conductor $36864$
Sign $1$
Analytic cond. $1951.02$
Root an. cond. $6.64608$
Motivic weight $6$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 42·3-s + 4·7-s + 1.03e3·9-s + 5.90e3·13-s − 1.05e4·19-s − 168·21-s + 2.45e3·25-s − 1.28e4·27-s + 4.57e4·31-s − 6.81e4·37-s − 2.47e5·39-s + 1.28e4·43-s − 2.35e5·49-s + 4.41e5·57-s + 1.25e5·61-s + 4.14e3·63-s − 8.77e5·67-s − 1.46e6·73-s − 1.02e5·75-s + 6.81e5·79-s − 2.14e5·81-s + 2.36e4·91-s − 1.92e6·93-s − 5.62e5·97-s − 1.73e6·103-s − 1.30e6·109-s + 2.86e6·111-s + ⋯
L(s)  = 1  − 1.55·3-s + 0.0116·7-s + 1.41·9-s + 2.68·13-s − 1.53·19-s − 0.0181·21-s + 0.156·25-s − 0.652·27-s + 1.53·31-s − 1.34·37-s − 4.17·39-s + 0.161·43-s − 1.99·49-s + 2.38·57-s + 0.551·61-s + 0.0165·63-s − 2.91·67-s − 3.75·73-s − 0.243·75-s + 1.38·79-s − 0.404·81-s + 0.0313·91-s − 2.39·93-s − 0.615·97-s − 1.58·103-s − 1.00·109-s + 2.09·111-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 36864 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(7-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 36864 ^{s/2} \, \Gamma_{\C}(s+3)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(36864\)    =    \(2^{12} \cdot 3^{2}\)
Sign: $1$
Analytic conductor: \(1951.02\)
Root analytic conductor: \(6.64608\)
Motivic weight: \(6\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 36864,\ (\ :3, 3),\ 1)\)

Particular Values

\(L(\frac{7}{2})\) \(\approx\) \(0.6696458163\)
\(L(\frac12)\) \(\approx\) \(0.6696458163\)
\(L(4)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 + 14 p T + p^{6} T^{2} \)
good5$C_2^2$ \( 1 - 98 p^{2} T^{2} + p^{12} T^{4} \)
7$C_2$ \( ( 1 - 2 T + p^{6} T^{2} )^{2} \)
11$C_2^2$ \( 1 - 3541970 T^{2} + p^{12} T^{4} \)
13$C_2$ \( ( 1 - 2950 T + p^{6} T^{2} )^{2} \)
17$C_2^2$ \( 1 - 28202690 T^{2} + p^{12} T^{4} \)
19$C_2$ \( ( 1 + 5258 T + p^{6} T^{2} )^{2} \)
23$C_2^2$ \( 1 - 191004770 T^{2} + p^{12} T^{4} \)
29$C_2^2$ \( 1 - 1184779442 T^{2} + p^{12} T^{4} \)
31$C_2$ \( ( 1 - 22898 T + p^{6} T^{2} )^{2} \)
37$C_2$ \( ( 1 + 34058 T + p^{6} T^{2} )^{2} \)
41$C_2^2$ \( 1 - 9219079010 T^{2} + p^{12} T^{4} \)
43$C_2$ \( ( 1 - 6406 T + p^{6} T^{2} )^{2} \)
47$C_2^2$ \( 1 + 10801249342 T^{2} + p^{12} T^{4} \)
53$C_2^2$ \( 1 - 7253988050 T^{2} + p^{12} T^{4} \)
59$C_2^2$ \( 1 + 22449655150 T^{2} + p^{12} T^{4} \)
61$C_2$ \( ( 1 - 62566 T + p^{6} T^{2} )^{2} \)
67$C_2$ \( ( 1 + 438698 T + p^{6} T^{2} )^{2} \)
71$C_2^2$ \( 1 - 251546372642 T^{2} + p^{12} T^{4} \)
73$C_2$ \( ( 1 + 730510 T + p^{6} T^{2} )^{2} \)
79$C_2$ \( ( 1 - 340562 T + p^{6} T^{2} )^{2} \)
83$C_2^2$ \( 1 - 407613512306 T^{2} + p^{12} T^{4} \)
89$C_2^2$ \( 1 - 844406214050 T^{2} + p^{12} T^{4} \)
97$C_2$ \( ( 1 + 281086 T + p^{6} T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.70024162155993725173622569610, −11.19262266883399505293752683071, −10.69766134325806103040588097787, −10.48205384685107958544292833803, −10.04181287163406750227337818160, −9.081933227418080509057283708698, −8.640989358195149584938553670282, −8.317421652675071035950448798649, −7.55669228165606360592259965474, −6.65928994522426545702929126005, −6.43405612232792369341128446141, −6.04205749649615516870674866829, −5.53248234550219966178354264792, −4.71785903879708832661512800125, −4.27385367698987898980544536043, −3.61836347489956775401733642947, −2.80357064097396915466721767734, −1.42103927080781707987557928088, −1.38090979098309881164155549510, −0.27190927060308537420611369931, 0.27190927060308537420611369931, 1.38090979098309881164155549510, 1.42103927080781707987557928088, 2.80357064097396915466721767734, 3.61836347489956775401733642947, 4.27385367698987898980544536043, 4.71785903879708832661512800125, 5.53248234550219966178354264792, 6.04205749649615516870674866829, 6.43405612232792369341128446141, 6.65928994522426545702929126005, 7.55669228165606360592259965474, 8.317421652675071035950448798649, 8.640989358195149584938553670282, 9.081933227418080509057283708698, 10.04181287163406750227337818160, 10.48205384685107958544292833803, 10.69766134325806103040588097787, 11.19262266883399505293752683071, 11.70024162155993725173622569610

Graph of the $Z$-function along the critical line