Properties

Degree $2$
Conductor $192$
Sign $0.918 + 0.395i$
Motivic weight $2$
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (1.22 + 1.22i)3-s + (−4.78 − 4.78i)5-s + 10.3·7-s + 2.99i·9-s + (0.526 − 0.526i)11-s + (17.2 − 17.2i)13-s − 11.7i·15-s + 4.71·17-s + (2.53 + 2.53i)19-s + (12.6 + 12.6i)21-s + 12.5·23-s + 20.8i·25-s + (−3.67 + 3.67i)27-s + (−2.19 + 2.19i)29-s + 28.0i·31-s + ⋯
L(s)  = 1  + (0.408 + 0.408i)3-s + (−0.957 − 0.957i)5-s + 1.47·7-s + 0.333i·9-s + (0.0478 − 0.0478i)11-s + (1.32 − 1.32i)13-s − 0.781i·15-s + 0.277·17-s + (0.133 + 0.133i)19-s + (0.602 + 0.602i)21-s + 0.547·23-s + 0.834i·25-s + (−0.136 + 0.136i)27-s + (−0.0757 + 0.0757i)29-s + 0.904i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 192 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.918 + 0.395i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 192 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.918 + 0.395i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(192\)    =    \(2^{6} \cdot 3\)
Sign: $0.918 + 0.395i$
Motivic weight: \(2\)
Character: $\chi_{192} (79, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 192,\ (\ :1),\ 0.918 + 0.395i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.70965 - 0.352018i\)
\(L(\frac12)\) \(\approx\) \(1.70965 - 0.352018i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (-1.22 - 1.22i)T \)
good5 \( 1 + (4.78 + 4.78i)T + 25iT^{2} \)
7 \( 1 - 10.3T + 49T^{2} \)
11 \( 1 + (-0.526 + 0.526i)T - 121iT^{2} \)
13 \( 1 + (-17.2 + 17.2i)T - 169iT^{2} \)
17 \( 1 - 4.71T + 289T^{2} \)
19 \( 1 + (-2.53 - 2.53i)T + 361iT^{2} \)
23 \( 1 - 12.5T + 529T^{2} \)
29 \( 1 + (2.19 - 2.19i)T - 841iT^{2} \)
31 \( 1 - 28.0iT - 961T^{2} \)
37 \( 1 + (32.1 + 32.1i)T + 1.36e3iT^{2} \)
41 \( 1 - 23.1iT - 1.68e3T^{2} \)
43 \( 1 + (4.79 - 4.79i)T - 1.84e3iT^{2} \)
47 \( 1 + 39.0iT - 2.20e3T^{2} \)
53 \( 1 + (27.9 + 27.9i)T + 2.80e3iT^{2} \)
59 \( 1 + (79.8 - 79.8i)T - 3.48e3iT^{2} \)
61 \( 1 + (36.7 - 36.7i)T - 3.72e3iT^{2} \)
67 \( 1 + (-10.9 - 10.9i)T + 4.48e3iT^{2} \)
71 \( 1 + 52.6T + 5.04e3T^{2} \)
73 \( 1 - 67.8iT - 5.32e3T^{2} \)
79 \( 1 - 56.4iT - 6.24e3T^{2} \)
83 \( 1 + (-58.3 - 58.3i)T + 6.88e3iT^{2} \)
89 \( 1 + 131. iT - 7.92e3T^{2} \)
97 \( 1 - 60.9T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.18415593254377227260947353223, −11.22803959858857303714146698019, −10.47266861774124663090502157174, −8.820561130594312063907243403119, −8.342051612761524327883983924812, −7.56708596576351764811886720817, −5.51565548405814255013620856131, −4.60906651651711544847946562674, −3.45730028664858211446216825770, −1.21514445701096959665337310196, 1.67881635611071963868465396561, 3.41136548539022760971683745201, 4.56976145684477704101835818951, 6.35203512508223981699569409065, 7.40847357441300929315128456169, 8.146222182248432338632068491330, 9.129612048650145158472619611708, 10.83975628255485267128524313165, 11.33126947332046220642382051660, 12.09066492418728341252417607028

Graph of the $Z$-function along the critical line