Properties

Degree $2$
Conductor $192$
Sign $0.964 - 0.264i$
Motivic weight $2$
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.22 − 1.22i)3-s + (3.32 + 3.32i)5-s + 4.04·7-s + 2.99i·9-s + (−6.82 + 6.82i)11-s + (4.29 − 4.29i)13-s − 8.14i·15-s + 30.1·17-s + (19.7 + 19.7i)19-s + (−4.94 − 4.94i)21-s + 28.2·23-s − 2.86i·25-s + (3.67 − 3.67i)27-s + (−21.3 + 21.3i)29-s − 38.0i·31-s + ⋯
L(s)  = 1  + (−0.408 − 0.408i)3-s + (0.665 + 0.665i)5-s + 0.577·7-s + 0.333i·9-s + (−0.620 + 0.620i)11-s + (0.330 − 0.330i)13-s − 0.543i·15-s + 1.77·17-s + (1.03 + 1.03i)19-s + (−0.235 − 0.235i)21-s + 1.22·23-s − 0.114i·25-s + (0.136 − 0.136i)27-s + (−0.736 + 0.736i)29-s − 1.22i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 192 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.964 - 0.264i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 192 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.964 - 0.264i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(192\)    =    \(2^{6} \cdot 3\)
Sign: $0.964 - 0.264i$
Motivic weight: \(2\)
Character: $\chi_{192} (79, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 192,\ (\ :1),\ 0.964 - 0.264i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.56675 + 0.210619i\)
\(L(\frac12)\) \(\approx\) \(1.56675 + 0.210619i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (1.22 + 1.22i)T \)
good5 \( 1 + (-3.32 - 3.32i)T + 25iT^{2} \)
7 \( 1 - 4.04T + 49T^{2} \)
11 \( 1 + (6.82 - 6.82i)T - 121iT^{2} \)
13 \( 1 + (-4.29 + 4.29i)T - 169iT^{2} \)
17 \( 1 - 30.1T + 289T^{2} \)
19 \( 1 + (-19.7 - 19.7i)T + 361iT^{2} \)
23 \( 1 - 28.2T + 529T^{2} \)
29 \( 1 + (21.3 - 21.3i)T - 841iT^{2} \)
31 \( 1 + 38.0iT - 961T^{2} \)
37 \( 1 + (42.8 + 42.8i)T + 1.36e3iT^{2} \)
41 \( 1 - 48.2iT - 1.68e3T^{2} \)
43 \( 1 + (32.6 - 32.6i)T - 1.84e3iT^{2} \)
47 \( 1 - 15.8iT - 2.20e3T^{2} \)
53 \( 1 + (0.476 + 0.476i)T + 2.80e3iT^{2} \)
59 \( 1 + (9.97 - 9.97i)T - 3.48e3iT^{2} \)
61 \( 1 + (-37.9 + 37.9i)T - 3.72e3iT^{2} \)
67 \( 1 + (20.0 + 20.0i)T + 4.48e3iT^{2} \)
71 \( 1 + 40.0T + 5.04e3T^{2} \)
73 \( 1 - 30.8iT - 5.32e3T^{2} \)
79 \( 1 + 130. iT - 6.24e3T^{2} \)
83 \( 1 + (-2.26 - 2.26i)T + 6.88e3iT^{2} \)
89 \( 1 + 72.2iT - 7.92e3T^{2} \)
97 \( 1 + 112.T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.37338733453381450158969378298, −11.34114097753482993395448669274, −10.39798707718620774743831246759, −9.645259923008038675166708714810, −7.992996215917910847833936786259, −7.29131967065960471524347079114, −5.92912019122614339178581650696, −5.14095636186942922821748464572, −3.17116707768128605861325790570, −1.54574240647416724279101055534, 1.20349317546440585800979460819, 3.30047537901743377207117223321, 5.13642681343776766143711268800, 5.44409777756539894618271672925, 7.07812072061231631784522874973, 8.401352353915172007939937667685, 9.320704584483751361656702190610, 10.29959433123173268657934295329, 11.28274638296643320491005371969, 12.15560851383203050583914557086

Graph of the $Z$-function along the critical line