Properties

Degree $2$
Conductor $192$
Sign $0.569 - 0.821i$
Motivic weight $2$
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.22 + 1.22i)3-s + (0.909 − 0.909i)5-s + 0.654·7-s − 2.99i·9-s + (13.3 + 13.3i)11-s + (8.32 + 8.32i)13-s + 2.22i·15-s − 3.93·17-s + (−16.8 + 16.8i)19-s + (−0.801 + 0.801i)21-s + 23.1·23-s + 23.3i·25-s + (3.67 + 3.67i)27-s + (35.6 + 35.6i)29-s − 45.5i·31-s + ⋯
L(s)  = 1  + (−0.408 + 0.408i)3-s + (0.181 − 0.181i)5-s + 0.0935·7-s − 0.333i·9-s + (1.21 + 1.21i)11-s + (0.640 + 0.640i)13-s + 0.148i·15-s − 0.231·17-s + (−0.889 + 0.889i)19-s + (−0.0381 + 0.0381i)21-s + 1.00·23-s + 0.933i·25-s + (0.136 + 0.136i)27-s + (1.22 + 1.22i)29-s − 1.46i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 192 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.569 - 0.821i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 192 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.569 - 0.821i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(192\)    =    \(2^{6} \cdot 3\)
Sign: $0.569 - 0.821i$
Motivic weight: \(2\)
Character: $\chi_{192} (175, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 192,\ (\ :1),\ 0.569 - 0.821i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.24998 + 0.654568i\)
\(L(\frac12)\) \(\approx\) \(1.24998 + 0.654568i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (1.22 - 1.22i)T \)
good5 \( 1 + (-0.909 + 0.909i)T - 25iT^{2} \)
7 \( 1 - 0.654T + 49T^{2} \)
11 \( 1 + (-13.3 - 13.3i)T + 121iT^{2} \)
13 \( 1 + (-8.32 - 8.32i)T + 169iT^{2} \)
17 \( 1 + 3.93T + 289T^{2} \)
19 \( 1 + (16.8 - 16.8i)T - 361iT^{2} \)
23 \( 1 - 23.1T + 529T^{2} \)
29 \( 1 + (-35.6 - 35.6i)T + 841iT^{2} \)
31 \( 1 + 45.5iT - 961T^{2} \)
37 \( 1 + (-10.1 + 10.1i)T - 1.36e3iT^{2} \)
41 \( 1 + 28.4iT - 1.68e3T^{2} \)
43 \( 1 + (22.7 + 22.7i)T + 1.84e3iT^{2} \)
47 \( 1 + 10.7iT - 2.20e3T^{2} \)
53 \( 1 + (-41.5 + 41.5i)T - 2.80e3iT^{2} \)
59 \( 1 + (-21.0 - 21.0i)T + 3.48e3iT^{2} \)
61 \( 1 + (68.7 + 68.7i)T + 3.72e3iT^{2} \)
67 \( 1 + (67.8 - 67.8i)T - 4.48e3iT^{2} \)
71 \( 1 + 33.3T + 5.04e3T^{2} \)
73 \( 1 + 18.6iT - 5.32e3T^{2} \)
79 \( 1 + 6.29iT - 6.24e3T^{2} \)
83 \( 1 + (-72.0 + 72.0i)T - 6.88e3iT^{2} \)
89 \( 1 - 10.6iT - 7.92e3T^{2} \)
97 \( 1 - 143.T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.32674506311227112715724143369, −11.51086201760934106886953477592, −10.50476846576218431927289618142, −9.457354163359421793246297895315, −8.711504200373937837769183283038, −7.10769655466420844712566315217, −6.21457770057744251420834720243, −4.81474735482928733396929625419, −3.82572984551057280577737066098, −1.64485216200630904756813040301, 0.994332729000749753185258906975, 2.98848440125084608347592057126, 4.59460777317616314944557983637, 6.12415670183239467039815755246, 6.64621779271117959408007360640, 8.216115269877501449593733891294, 8.976706973194079817440356422957, 10.45029309957100921357030776679, 11.20164853397477906397488954023, 12.05313428872087786830448225152

Graph of the $Z$-function along the critical line