| L(s) = 1 | + (−0.743 − 1.20i)2-s + (−1.02 − 1.39i)3-s + (−0.894 + 1.78i)4-s + (1.69 + 2.52i)5-s + (−0.911 + 2.27i)6-s + (−1.66 + 4.02i)7-s + (2.81 − 0.253i)8-s + (−0.884 + 2.86i)9-s + (1.78 − 3.91i)10-s + (−3.48 − 0.692i)11-s + (3.41 − 0.593i)12-s + (3.08 + 2.06i)13-s + (6.08 − 0.987i)14-s + (1.78 − 4.95i)15-s + (−2.39 − 3.20i)16-s + (−2.62 − 2.62i)17-s + ⋯ |
| L(s) = 1 | + (−0.525 − 0.850i)2-s + (−0.593 − 0.804i)3-s + (−0.447 + 0.894i)4-s + (0.755 + 1.13i)5-s + (−0.372 + 0.928i)6-s + (−0.630 + 1.52i)7-s + (0.995 − 0.0896i)8-s + (−0.294 + 0.955i)9-s + (0.565 − 1.23i)10-s + (−1.04 − 0.208i)11-s + (0.985 − 0.171i)12-s + (0.856 + 0.572i)13-s + (1.62 − 0.264i)14-s + (0.461 − 1.28i)15-s + (−0.599 − 0.800i)16-s + (−0.636 − 0.636i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 192 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.867 - 0.497i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 192 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.867 - 0.497i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.627307 + 0.167177i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.627307 + 0.167177i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (0.743 + 1.20i)T \) |
| 3 | \( 1 + (1.02 + 1.39i)T \) |
| good | 5 | \( 1 + (-1.69 - 2.52i)T + (-1.91 + 4.61i)T^{2} \) |
| 7 | \( 1 + (1.66 - 4.02i)T + (-4.94 - 4.94i)T^{2} \) |
| 11 | \( 1 + (3.48 + 0.692i)T + (10.1 + 4.20i)T^{2} \) |
| 13 | \( 1 + (-3.08 - 2.06i)T + (4.97 + 12.0i)T^{2} \) |
| 17 | \( 1 + (2.62 + 2.62i)T + 17iT^{2} \) |
| 19 | \( 1 + (-2.52 - 1.68i)T + (7.27 + 17.5i)T^{2} \) |
| 23 | \( 1 + (-1.33 - 3.23i)T + (-16.2 + 16.2i)T^{2} \) |
| 29 | \( 1 + (0.240 + 1.20i)T + (-26.7 + 11.0i)T^{2} \) |
| 31 | \( 1 + 5.17T + 31T^{2} \) |
| 37 | \( 1 + (-2.19 - 3.29i)T + (-14.1 + 34.1i)T^{2} \) |
| 41 | \( 1 + (2.03 - 0.842i)T + (28.9 - 28.9i)T^{2} \) |
| 43 | \( 1 + (-10.1 - 2.01i)T + (39.7 + 16.4i)T^{2} \) |
| 47 | \( 1 + (-3.16 + 3.16i)T - 47iT^{2} \) |
| 53 | \( 1 + (1.90 - 9.57i)T + (-48.9 - 20.2i)T^{2} \) |
| 59 | \( 1 + (-8.20 + 5.48i)T + (22.5 - 54.5i)T^{2} \) |
| 61 | \( 1 + (1.36 + 6.84i)T + (-56.3 + 23.3i)T^{2} \) |
| 67 | \( 1 + (-3.78 + 0.753i)T + (61.8 - 25.6i)T^{2} \) |
| 71 | \( 1 + (4.21 + 1.74i)T + (50.2 + 50.2i)T^{2} \) |
| 73 | \( 1 + (1.11 - 0.460i)T + (51.6 - 51.6i)T^{2} \) |
| 79 | \( 1 + (-2.41 + 2.41i)T - 79iT^{2} \) |
| 83 | \( 1 + (2.81 - 4.21i)T + (-31.7 - 76.6i)T^{2} \) |
| 89 | \( 1 + (-6.04 - 2.50i)T + (62.9 + 62.9i)T^{2} \) |
| 97 | \( 1 - 3.52iT - 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.49639567248276201636271477465, −11.47090577286521253011404811656, −10.89451650393986723862941401384, −9.766066863077888174769953836530, −8.821087610452111802552074607619, −7.52540962339633717043975973347, −6.37234218282630134827618549084, −5.43528126589935102036743485124, −2.97950600735445273846246437102, −2.13316155677345113257032073023,
0.74227310090101111145301788501, 4.08522759419009646017213548539, 5.15961763259285910273983246999, 6.03897282664147716908698753558, 7.25754730721404914074573025873, 8.616245967195688578130244515916, 9.477466835448543499592445454678, 10.40245326695980513400987719804, 10.84052769712153225543565543176, 12.96500208565349974266525614241