Properties

Label 2-192-192.107-c1-0-2
Degree $2$
Conductor $192$
Sign $0.817 - 0.575i$
Analytic cond. $1.53312$
Root an. cond. $1.23819$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.40 − 0.166i)2-s + (−1.73 + 0.0744i)3-s + (1.94 + 0.466i)4-s + (−0.720 − 1.07i)5-s + (2.44 + 0.182i)6-s + (−0.767 + 1.85i)7-s + (−2.65 − 0.978i)8-s + (2.98 − 0.257i)9-s + (0.833 + 1.63i)10-s + (0.967 + 0.192i)11-s + (−3.40 − 0.662i)12-s + (2.76 + 1.84i)13-s + (1.38 − 2.47i)14-s + (1.32 + 1.81i)15-s + (3.56 + 1.81i)16-s + (4.20 + 4.20i)17-s + ⋯
L(s)  = 1  + (−0.993 − 0.117i)2-s + (−0.999 + 0.0429i)3-s + (0.972 + 0.233i)4-s + (−0.322 − 0.482i)5-s + (0.997 + 0.0746i)6-s + (−0.289 + 0.699i)7-s + (−0.938 − 0.345i)8-s + (0.996 − 0.0859i)9-s + (0.263 + 0.516i)10-s + (0.291 + 0.0580i)11-s + (−0.981 − 0.191i)12-s + (0.767 + 0.512i)13-s + (0.370 − 0.661i)14-s + (0.342 + 0.468i)15-s + (0.891 + 0.453i)16-s + (1.01 + 1.01i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 192 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.817 - 0.575i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 192 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.817 - 0.575i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(192\)    =    \(2^{6} \cdot 3\)
Sign: $0.817 - 0.575i$
Analytic conductor: \(1.53312\)
Root analytic conductor: \(1.23819\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{192} (107, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 192,\ (\ :1/2),\ 0.817 - 0.575i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.513616 + 0.162559i\)
\(L(\frac12)\) \(\approx\) \(0.513616 + 0.162559i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (1.40 + 0.166i)T \)
3 \( 1 + (1.73 - 0.0744i)T \)
good5 \( 1 + (0.720 + 1.07i)T + (-1.91 + 4.61i)T^{2} \)
7 \( 1 + (0.767 - 1.85i)T + (-4.94 - 4.94i)T^{2} \)
11 \( 1 + (-0.967 - 0.192i)T + (10.1 + 4.20i)T^{2} \)
13 \( 1 + (-2.76 - 1.84i)T + (4.97 + 12.0i)T^{2} \)
17 \( 1 + (-4.20 - 4.20i)T + 17iT^{2} \)
19 \( 1 + (-1.31 - 0.879i)T + (7.27 + 17.5i)T^{2} \)
23 \( 1 + (-3.41 - 8.25i)T + (-16.2 + 16.2i)T^{2} \)
29 \( 1 + (0.303 + 1.52i)T + (-26.7 + 11.0i)T^{2} \)
31 \( 1 - 1.85T + 31T^{2} \)
37 \( 1 + (3.53 + 5.29i)T + (-14.1 + 34.1i)T^{2} \)
41 \( 1 + (-0.606 + 0.251i)T + (28.9 - 28.9i)T^{2} \)
43 \( 1 + (7.79 + 1.54i)T + (39.7 + 16.4i)T^{2} \)
47 \( 1 + (3.56 - 3.56i)T - 47iT^{2} \)
53 \( 1 + (0.605 - 3.04i)T + (-48.9 - 20.2i)T^{2} \)
59 \( 1 + (-6.01 + 4.01i)T + (22.5 - 54.5i)T^{2} \)
61 \( 1 + (-2.31 - 11.6i)T + (-56.3 + 23.3i)T^{2} \)
67 \( 1 + (-12.2 + 2.43i)T + (61.8 - 25.6i)T^{2} \)
71 \( 1 + (10.2 + 4.23i)T + (50.2 + 50.2i)T^{2} \)
73 \( 1 + (8.22 - 3.40i)T + (51.6 - 51.6i)T^{2} \)
79 \( 1 + (-4.22 + 4.22i)T - 79iT^{2} \)
83 \( 1 + (-8.63 + 12.9i)T + (-31.7 - 76.6i)T^{2} \)
89 \( 1 + (-10.4 - 4.32i)T + (62.9 + 62.9i)T^{2} \)
97 \( 1 - 4.02iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.14307148597385510711203233265, −11.71439792788628969663136535013, −10.66529589640845641123484048717, −9.673038267739063644282297408622, −8.766264482344767399089957749556, −7.62244319453026498270847336173, −6.40457777562962491335017721622, −5.50846534419731542596944761741, −3.68844594441271233678242696048, −1.39528535189350007281672872130, 0.871277895285357529747119070940, 3.30868336867952353048361825683, 5.20497246716633059225906010002, 6.59769448952839462454151747394, 7.11056440229037908574306622427, 8.324569248994521945972548725373, 9.746558263353965763074891780409, 10.49762372699454363804785017982, 11.23629131819448250388260880384, 12.04738624619939933147403349529

Graph of the $Z$-function along the critical line