Properties

Label 4-1911e2-1.1-c0e2-0-11
Degree $4$
Conductor $3651921$
Sign $1$
Analytic cond. $0.909568$
Root an. cond. $0.976582$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 4-s + 3·9-s + 2·12-s − 13-s + 25-s + 4·27-s + 3·36-s − 3·37-s − 2·39-s + 43-s − 52-s − 2·61-s − 64-s − 3·73-s + 2·75-s + 2·79-s + 5·81-s + 3·97-s + 100-s − 103-s + 4·108-s − 3·109-s − 6·111-s − 3·117-s − 2·121-s + 127-s + ⋯
L(s)  = 1  + 2·3-s + 4-s + 3·9-s + 2·12-s − 13-s + 25-s + 4·27-s + 3·36-s − 3·37-s − 2·39-s + 43-s − 52-s − 2·61-s − 64-s − 3·73-s + 2·75-s + 2·79-s + 5·81-s + 3·97-s + 100-s − 103-s + 4·108-s − 3·109-s − 6·111-s − 3·117-s − 2·121-s + 127-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3651921 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3651921 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(3651921\)    =    \(3^{2} \cdot 7^{4} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(0.909568\)
Root analytic conductor: \(0.976582\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 3651921,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(3.239776127\)
\(L(\frac12)\) \(\approx\) \(3.239776127\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$ \( ( 1 - T )^{2} \)
7 \( 1 \)
13$C_2$ \( 1 + T + T^{2} \)
good2$C_2^2$ \( 1 - T^{2} + T^{4} \)
5$C_2^2$ \( 1 - T^{2} + T^{4} \)
11$C_2$ \( ( 1 + T^{2} )^{2} \)
17$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
19$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
23$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
29$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
31$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
37$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 + T + T^{2} ) \)
41$C_2^2$ \( 1 - T^{2} + T^{4} \)
43$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
47$C_2^2$ \( 1 - T^{2} + T^{4} \)
53$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
59$C_2^2$ \( 1 - T^{2} + T^{4} \)
61$C_2$ \( ( 1 + T + T^{2} )^{2} \)
67$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
71$C_2^2$ \( 1 - T^{2} + T^{4} \)
73$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 + T + T^{2} ) \)
79$C_2$ \( ( 1 - T + T^{2} )^{2} \)
83$C_2$ \( ( 1 + T^{2} )^{2} \)
89$C_2^2$ \( 1 - T^{2} + T^{4} \)
97$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 - T + T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.309644733601260581145283972686, −9.174069432301650667015551679929, −8.865997004054478147977700228350, −8.507880347017384678144413303819, −7.945262315351287449566326941441, −7.58856228742665844080815196510, −7.37823322609500111327843976467, −7.01146288541446575869758535933, −6.55349627360528221583225869190, −6.39013395271185543641049770694, −5.46841893645121303954388477802, −5.09144083487460602071559284649, −4.52815690637884119446611512614, −4.23323282315308325054342726737, −3.51205808630915673771221989861, −3.19922399102199989391815765240, −2.71921494366827768598467662107, −2.37718205174090685591041442415, −1.77747162008191393917267290324, −1.39544574902744931859520919945, 1.39544574902744931859520919945, 1.77747162008191393917267290324, 2.37718205174090685591041442415, 2.71921494366827768598467662107, 3.19922399102199989391815765240, 3.51205808630915673771221989861, 4.23323282315308325054342726737, 4.52815690637884119446611512614, 5.09144083487460602071559284649, 5.46841893645121303954388477802, 6.39013395271185543641049770694, 6.55349627360528221583225869190, 7.01146288541446575869758535933, 7.37823322609500111327843976467, 7.58856228742665844080815196510, 7.945262315351287449566326941441, 8.507880347017384678144413303819, 8.865997004054478147977700228350, 9.174069432301650667015551679929, 9.309644733601260581145283972686

Graph of the $Z$-function along the critical line