Properties

Label 4-1911e2-1.1-c0e2-0-4
Degree $4$
Conductor $3651921$
Sign $1$
Analytic cond. $0.909568$
Root an. cond. $0.976582$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·4-s + 2·12-s − 13-s + 3·16-s + 3·19-s + 25-s + 27-s + 39-s + 43-s − 3·48-s + 2·52-s − 3·57-s + 61-s − 4·64-s + 3·73-s − 75-s − 6·76-s + 2·79-s − 81-s + 3·97-s − 2·100-s − 103-s − 2·108-s + 3·109-s + 121-s + 127-s + ⋯
L(s)  = 1  − 3-s − 2·4-s + 2·12-s − 13-s + 3·16-s + 3·19-s + 25-s + 27-s + 39-s + 43-s − 3·48-s + 2·52-s − 3·57-s + 61-s − 4·64-s + 3·73-s − 75-s − 6·76-s + 2·79-s − 81-s + 3·97-s − 2·100-s − 103-s − 2·108-s + 3·109-s + 121-s + 127-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3651921 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3651921 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(3651921\)    =    \(3^{2} \cdot 7^{4} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(0.909568\)
Root analytic conductor: \(0.976582\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 3651921,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.5303760414\)
\(L(\frac12)\) \(\approx\) \(0.5303760414\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_2$ \( 1 + T + T^{2} \)
7 \( 1 \)
13$C_2$ \( 1 + T + T^{2} \)
good2$C_2$ \( ( 1 + T^{2} )^{2} \)
5$C_2^2$ \( 1 - T^{2} + T^{4} \)
11$C_2^2$ \( 1 - T^{2} + T^{4} \)
17$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
19$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 - T + T^{2} ) \)
23$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
29$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
31$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
37$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
41$C_2^2$ \( 1 - T^{2} + T^{4} \)
43$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
47$C_2^2$ \( 1 - T^{2} + T^{4} \)
53$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
59$C_2$ \( ( 1 + T^{2} )^{2} \)
61$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
67$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
71$C_2^2$ \( 1 - T^{2} + T^{4} \)
73$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 - T + T^{2} ) \)
79$C_2$ \( ( 1 - T + T^{2} )^{2} \)
83$C_2$ \( ( 1 + T^{2} )^{2} \)
89$C_2$ \( ( 1 + T^{2} )^{2} \)
97$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 - T + T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.443509825291709453415471530647, −9.377586759013978429858816401509, −8.942857247351900771531994795596, −8.473562133858525512805613385050, −8.006726202537607326669702055287, −7.76089650629337650587065927261, −7.13088013422529407678909832241, −7.07993286125100485321485777199, −6.09768905813057962388267373373, −5.97975760862955154228519980021, −5.35251650774687348462217162307, −5.08270375959676737926421746361, −4.87708361920055056771955686231, −4.61213433406141015990881293163, −3.64692694192492682310858932750, −3.56822761450352521665703062324, −2.98584543240951196608292332664, −2.25026882348010017562896414617, −0.955850460410881885712347424039, −0.845312294892577637528653377864, 0.845312294892577637528653377864, 0.955850460410881885712347424039, 2.25026882348010017562896414617, 2.98584543240951196608292332664, 3.56822761450352521665703062324, 3.64692694192492682310858932750, 4.61213433406141015990881293163, 4.87708361920055056771955686231, 5.08270375959676737926421746361, 5.35251650774687348462217162307, 5.97975760862955154228519980021, 6.09768905813057962388267373373, 7.07993286125100485321485777199, 7.13088013422529407678909832241, 7.76089650629337650587065927261, 8.006726202537607326669702055287, 8.473562133858525512805613385050, 8.942857247351900771531994795596, 9.377586759013978429858816401509, 9.443509825291709453415471530647

Graph of the $Z$-function along the critical line