Properties

Label 4-1911e2-1.1-c0e2-0-8
Degree $4$
Conductor $3651921$
Sign $1$
Analytic cond. $0.909568$
Root an. cond. $0.976582$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 4-s + 12-s + 13-s + 3·19-s − 2·25-s − 27-s + 3·37-s + 39-s + 43-s + 52-s + 3·57-s − 61-s − 64-s − 2·75-s + 3·76-s − 4·79-s − 81-s − 3·97-s − 2·100-s − 2·103-s − 108-s + 3·111-s + 121-s + 127-s + 129-s + 131-s + ⋯
L(s)  = 1  + 3-s + 4-s + 12-s + 13-s + 3·19-s − 2·25-s − 27-s + 3·37-s + 39-s + 43-s + 52-s + 3·57-s − 61-s − 64-s − 2·75-s + 3·76-s − 4·79-s − 81-s − 3·97-s − 2·100-s − 2·103-s − 108-s + 3·111-s + 121-s + 127-s + 129-s + 131-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3651921 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3651921 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(3651921\)    =    \(3^{2} \cdot 7^{4} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(0.909568\)
Root analytic conductor: \(0.976582\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 3651921,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(2.382493726\)
\(L(\frac12)\) \(\approx\) \(2.382493726\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_2$ \( 1 - T + T^{2} \)
7 \( 1 \)
13$C_2$ \( 1 - T + T^{2} \)
good2$C_2^2$ \( 1 - T^{2} + T^{4} \)
5$C_2$ \( ( 1 + T^{2} )^{2} \)
11$C_2^2$ \( 1 - T^{2} + T^{4} \)
17$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
19$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 - T + T^{2} ) \)
23$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
29$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
31$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
37$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 - T + T^{2} ) \)
41$C_2^2$ \( 1 - T^{2} + T^{4} \)
43$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
47$C_2$ \( ( 1 + T^{2} )^{2} \)
53$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
59$C_2^2$ \( 1 - T^{2} + T^{4} \)
61$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
67$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
71$C_2^2$ \( 1 - T^{2} + T^{4} \)
73$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
79$C_1$ \( ( 1 + T )^{4} \)
83$C_2$ \( ( 1 + T^{2} )^{2} \)
89$C_2^2$ \( 1 - T^{2} + T^{4} \)
97$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 + T + T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.539617976675782593102825891352, −9.185815733142517086475517805462, −8.958738313129502722774150561012, −8.247329423283318454193391845671, −7.87941653306926686946060124983, −7.82124782762048437819464464021, −7.21220611272151546723678212208, −7.15948050781961457142094209113, −6.34966520918478172905305014541, −6.00644609599014517815311886888, −5.56447710362294550137150329293, −5.53308812304842322226745067563, −4.50397730533051305641566800075, −4.14855489657331897356883493198, −3.68644264518180289501742837283, −3.13732270115115354470991765878, −2.63614960444786369680539498936, −2.59085406668557991351579058436, −1.53942532651469422276912997261, −1.27181276358664632801289333205, 1.27181276358664632801289333205, 1.53942532651469422276912997261, 2.59085406668557991351579058436, 2.63614960444786369680539498936, 3.13732270115115354470991765878, 3.68644264518180289501742837283, 4.14855489657331897356883493198, 4.50397730533051305641566800075, 5.53308812304842322226745067563, 5.56447710362294550137150329293, 6.00644609599014517815311886888, 6.34966520918478172905305014541, 7.15948050781961457142094209113, 7.21220611272151546723678212208, 7.82124782762048437819464464021, 7.87941653306926686946060124983, 8.247329423283318454193391845671, 8.958738313129502722774150561012, 9.185815733142517086475517805462, 9.539617976675782593102825891352

Graph of the $Z$-function along the critical line