Properties

Label 4-1911e2-1.1-c0e2-0-1
Degree $4$
Conductor $3651921$
Sign $1$
Analytic cond. $0.909568$
Root an. cond. $0.976582$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 4-s − 12-s − 13-s − 3·19-s − 2·25-s + 27-s + 3·37-s + 39-s + 43-s − 52-s + 3·57-s + 61-s − 64-s + 2·75-s − 3·76-s − 4·79-s − 81-s + 3·97-s − 2·100-s + 2·103-s + 108-s − 3·111-s + 121-s + 127-s − 129-s + 131-s + ⋯
L(s)  = 1  − 3-s + 4-s − 12-s − 13-s − 3·19-s − 2·25-s + 27-s + 3·37-s + 39-s + 43-s − 52-s + 3·57-s + 61-s − 64-s + 2·75-s − 3·76-s − 4·79-s − 81-s + 3·97-s − 2·100-s + 2·103-s + 108-s − 3·111-s + 121-s + 127-s − 129-s + 131-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3651921 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3651921 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(3651921\)    =    \(3^{2} \cdot 7^{4} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(0.909568\)
Root analytic conductor: \(0.976582\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 3651921,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.6728927704\)
\(L(\frac12)\) \(\approx\) \(0.6728927704\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_2$ \( 1 + T + T^{2} \)
7 \( 1 \)
13$C_2$ \( 1 + T + T^{2} \)
good2$C_2^2$ \( 1 - T^{2} + T^{4} \)
5$C_2$ \( ( 1 + T^{2} )^{2} \)
11$C_2^2$ \( 1 - T^{2} + T^{4} \)
17$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
19$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 + T + T^{2} ) \)
23$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
29$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
31$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
37$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 - T + T^{2} ) \)
41$C_2^2$ \( 1 - T^{2} + T^{4} \)
43$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
47$C_2$ \( ( 1 + T^{2} )^{2} \)
53$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
59$C_2^2$ \( 1 - T^{2} + T^{4} \)
61$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
67$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
71$C_2^2$ \( 1 - T^{2} + T^{4} \)
73$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
79$C_1$ \( ( 1 + T )^{4} \)
83$C_2$ \( ( 1 + T^{2} )^{2} \)
89$C_2^2$ \( 1 - T^{2} + T^{4} \)
97$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 - T + T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.797350943505261902503758501593, −9.078603658779419018443433569790, −8.949804852530515720052663925626, −8.226722828839490055123986141565, −8.097128653855452684735595781446, −7.38330118863900126867678063803, −7.36350503116856883740770103992, −6.64516734715479297145623861589, −6.39896875523237896851727197586, −5.92768647642378177697410623732, −5.91877674034631193595653990602, −5.32468806028025142523235153501, −4.51609018354352792829453870868, −4.32451662173143775521012180716, −4.14964012363205981019583132946, −3.09553092393455181817991695072, −2.66745555936155289403605490349, −2.00500247912293567011383727501, −2.00166582799035419287843852625, −0.59619517928034155510826749509, 0.59619517928034155510826749509, 2.00166582799035419287843852625, 2.00500247912293567011383727501, 2.66745555936155289403605490349, 3.09553092393455181817991695072, 4.14964012363205981019583132946, 4.32451662173143775521012180716, 4.51609018354352792829453870868, 5.32468806028025142523235153501, 5.91877674034631193595653990602, 5.92768647642378177697410623732, 6.39896875523237896851727197586, 6.64516734715479297145623861589, 7.36350503116856883740770103992, 7.38330118863900126867678063803, 8.097128653855452684735595781446, 8.226722828839490055123986141565, 8.949804852530515720052663925626, 9.078603658779419018443433569790, 9.797350943505261902503758501593

Graph of the $Z$-function along the critical line