Properties

Label 4-1900e2-1.1-c0e2-0-0
Degree $4$
Conductor $3610000$
Sign $1$
Analytic cond. $0.899127$
Root an. cond. $0.973767$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·9-s − 2·11-s − 2·19-s + 49-s − 2·61-s + 3·81-s + 4·99-s + 4·101-s + 121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 2·169-s + 4·171-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + ⋯
L(s)  = 1  − 2·9-s − 2·11-s − 2·19-s + 49-s − 2·61-s + 3·81-s + 4·99-s + 4·101-s + 121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 2·169-s + 4·171-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3610000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3610000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(3610000\)    =    \(2^{4} \cdot 5^{4} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(0.899127\)
Root analytic conductor: \(0.973767\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 3610000,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.4540546875\)
\(L(\frac12)\) \(\approx\) \(0.4540546875\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
19$C_1$ \( ( 1 + T )^{2} \)
good3$C_2$ \( ( 1 + T^{2} )^{2} \)
7$C_2^2$ \( 1 - T^{2} + T^{4} \)
11$C_2$ \( ( 1 + T + T^{2} )^{2} \)
13$C_2$ \( ( 1 + T^{2} )^{2} \)
17$C_2^2$ \( 1 - T^{2} + T^{4} \)
23$C_2$ \( ( 1 + T^{2} )^{2} \)
29$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
31$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
37$C_2$ \( ( 1 + T^{2} )^{2} \)
41$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
43$C_2^2$ \( 1 - T^{2} + T^{4} \)
47$C_2^2$ \( 1 - T^{2} + T^{4} \)
53$C_2$ \( ( 1 + T^{2} )^{2} \)
59$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
61$C_2$ \( ( 1 + T + T^{2} )^{2} \)
67$C_2$ \( ( 1 + T^{2} )^{2} \)
71$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
73$C_2^2$ \( 1 - T^{2} + T^{4} \)
79$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
83$C_2$ \( ( 1 + T^{2} )^{2} \)
89$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
97$C_2$ \( ( 1 + T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.509947449414602419106130512195, −9.013980968579495021598026174935, −8.809579887284687448615259578896, −8.364594750470749039077062346468, −8.193609026008999431328878211945, −7.63875873177797577440868630389, −7.48196833966580025376413301999, −6.79472724693543134209112575982, −6.22018702024616175722806379509, −6.02048931963967397356330763431, −5.70871104286145118615489737517, −5.01508359892013033273867357364, −4.98472888269810639769922012330, −4.32457160612193697710962987326, −3.73575783513243868403494954662, −3.10376437912904939628873921552, −2.78733877447800069076163046380, −2.31783756224388070910610549951, −1.90230738564628567184693902590, −0.45808780948722940640938766709, 0.45808780948722940640938766709, 1.90230738564628567184693902590, 2.31783756224388070910610549951, 2.78733877447800069076163046380, 3.10376437912904939628873921552, 3.73575783513243868403494954662, 4.32457160612193697710962987326, 4.98472888269810639769922012330, 5.01508359892013033273867357364, 5.70871104286145118615489737517, 6.02048931963967397356330763431, 6.22018702024616175722806379509, 6.79472724693543134209112575982, 7.48196833966580025376413301999, 7.63875873177797577440868630389, 8.193609026008999431328878211945, 8.364594750470749039077062346468, 8.809579887284687448615259578896, 9.013980968579495021598026174935, 9.509947449414602419106130512195

Graph of the $Z$-function along the critical line