Properties

Label 2-19-1.1-c7-0-8
Degree $2$
Conductor $19$
Sign $-1$
Analytic cond. $5.93531$
Root an. cond. $2.43625$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.18·2-s + 20.6·3-s − 117.·4-s − 477.·5-s + 65.7·6-s + 883.·7-s − 782.·8-s − 1.76e3·9-s − 1.52e3·10-s − 5.16e3·11-s − 2.43e3·12-s + 5.64e3·13-s + 2.81e3·14-s − 9.86e3·15-s + 1.25e4·16-s − 5.86e3·17-s − 5.60e3·18-s + 6.85e3·19-s + 5.62e4·20-s + 1.82e4·21-s − 1.64e4·22-s − 3.71e4·23-s − 1.61e4·24-s + 1.50e5·25-s + 1.79e4·26-s − 8.15e4·27-s − 1.04e5·28-s + ⋯
L(s)  = 1  + 0.281·2-s + 0.441·3-s − 0.920·4-s − 1.70·5-s + 0.124·6-s + 0.973·7-s − 0.540·8-s − 0.804·9-s − 0.480·10-s − 1.16·11-s − 0.406·12-s + 0.712·13-s + 0.274·14-s − 0.754·15-s + 0.768·16-s − 0.289·17-s − 0.226·18-s + 0.229·19-s + 1.57·20-s + 0.430·21-s − 0.328·22-s − 0.636·23-s − 0.238·24-s + 1.92·25-s + 0.200·26-s − 0.797·27-s − 0.896·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 19 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 19 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(19\)
Sign: $-1$
Analytic conductor: \(5.93531\)
Root analytic conductor: \(2.43625\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 19,\ (\ :7/2),\ -1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad19 \( 1 - 6.85e3T \)
good2 \( 1 - 3.18T + 128T^{2} \)
3 \( 1 - 20.6T + 2.18e3T^{2} \)
5 \( 1 + 477.T + 7.81e4T^{2} \)
7 \( 1 - 883.T + 8.23e5T^{2} \)
11 \( 1 + 5.16e3T + 1.94e7T^{2} \)
13 \( 1 - 5.64e3T + 6.27e7T^{2} \)
17 \( 1 + 5.86e3T + 4.10e8T^{2} \)
23 \( 1 + 3.71e4T + 3.40e9T^{2} \)
29 \( 1 - 1.87e5T + 1.72e10T^{2} \)
31 \( 1 + 2.42e5T + 2.75e10T^{2} \)
37 \( 1 + 4.67e5T + 9.49e10T^{2} \)
41 \( 1 + 5.57e5T + 1.94e11T^{2} \)
43 \( 1 - 4.08e5T + 2.71e11T^{2} \)
47 \( 1 + 4.39e5T + 5.06e11T^{2} \)
53 \( 1 + 8.30e5T + 1.17e12T^{2} \)
59 \( 1 + 8.80e5T + 2.48e12T^{2} \)
61 \( 1 - 1.59e6T + 3.14e12T^{2} \)
67 \( 1 + 3.48e6T + 6.06e12T^{2} \)
71 \( 1 - 4.06e6T + 9.09e12T^{2} \)
73 \( 1 - 2.04e6T + 1.10e13T^{2} \)
79 \( 1 - 5.18e6T + 1.92e13T^{2} \)
83 \( 1 + 2.10e6T + 2.71e13T^{2} \)
89 \( 1 - 6.75e6T + 4.42e13T^{2} \)
97 \( 1 - 3.64e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.92278800207290608557332042392, −14.85889372754534975778890571104, −13.76327572637728651946830856810, −12.20255731670735797416615345243, −10.95082667044089614081906507840, −8.572233735888957194970151729705, −7.947937172009549844828116499513, −4.99695903503744192178456194094, −3.50683639537017352707305423611, 0, 3.50683639537017352707305423611, 4.99695903503744192178456194094, 7.947937172009549844828116499513, 8.572233735888957194970151729705, 10.95082667044089614081906507840, 12.20255731670735797416615345243, 13.76327572637728651946830856810, 14.85889372754534975778890571104, 15.92278800207290608557332042392

Graph of the $Z$-function along the critical line