Properties

Label 8-189e4-1.1-c2e4-0-7
Degree $8$
Conductor $1275989841$
Sign $1$
Analytic cond. $703.375$
Root an. cond. $2.26933$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·4-s − 12·13-s + 23·16-s + 24·19-s + 68·25-s + 64·31-s − 92·37-s − 28·43-s + 14·49-s − 96·52-s + 96·61-s − 16·64-s + 156·67-s + 196·73-s + 192·76-s − 484·79-s + 16·97-s + 544·100-s + 80·103-s − 32·109-s − 52·121-s + 512·124-s + 127-s + 131-s + 137-s + 139-s − 736·148-s + ⋯
L(s)  = 1  + 2·4-s − 0.923·13-s + 1.43·16-s + 1.26·19-s + 2.71·25-s + 2.06·31-s − 2.48·37-s − 0.651·43-s + 2/7·49-s − 1.84·52-s + 1.57·61-s − 1/4·64-s + 2.32·67-s + 2.68·73-s + 2.52·76-s − 6.12·79-s + 0.164·97-s + 5.43·100-s + 0.776·103-s − 0.293·109-s − 0.429·121-s + 4.12·124-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s − 4.97·148-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{12} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{12} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(3^{12} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(703.375\)
Root analytic conductor: \(2.26933\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 3^{12} \cdot 7^{4} ,\ ( \ : 1, 1, 1, 1 ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(5.144421982\)
\(L(\frac12)\) \(\approx\) \(5.144421982\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
7$C_2$ \( ( 1 - p T^{2} )^{2} \)
good2$D_4\times C_2$ \( 1 - p^{3} T^{2} + 41 T^{4} - p^{7} T^{6} + p^{8} T^{8} \)
5$D_4\times C_2$ \( 1 - 68 T^{2} + 2231 T^{4} - 68 p^{4} T^{6} + p^{8} T^{8} \)
11$D_4\times C_2$ \( 1 + 52 T^{2} + 26255 T^{4} + 52 p^{4} T^{6} + p^{8} T^{8} \)
13$D_{4}$ \( ( 1 + 6 T + 172 T^{2} + 6 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
17$C_2^2$ \( ( 1 - 560 T^{2} + p^{4} T^{4} )^{2} \)
19$D_{4}$ \( ( 1 - 12 T + 751 T^{2} - 12 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
23$D_4\times C_2$ \( 1 - 964 T^{2} + 723399 T^{4} - 964 p^{4} T^{6} + p^{8} T^{8} \)
29$D_4\times C_2$ \( 1 - 560 T^{2} + 1481762 T^{4} - 560 p^{4} T^{6} + p^{8} T^{8} \)
31$D_{4}$ \( ( 1 - 32 T + 1835 T^{2} - 32 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
37$D_{4}$ \( ( 1 + 46 T + 1895 T^{2} + 46 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
41$D_4\times C_2$ \( 1 - 212 T^{2} + 1983383 T^{4} - 212 p^{4} T^{6} + p^{8} T^{8} \)
43$D_{4}$ \( ( 1 + 14 T + 2172 T^{2} + 14 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
47$D_4\times C_2$ \( 1 - 7792 T^{2} + 24901890 T^{4} - 7792 p^{4} T^{6} + p^{8} T^{8} \)
53$D_4\times C_2$ \( 1 - 4612 T^{2} + 19057398 T^{4} - 4612 p^{4} T^{6} + p^{8} T^{8} \)
59$D_4\times C_2$ \( 1 - 280 T^{2} + 8251314 T^{4} - 280 p^{4} T^{6} + p^{8} T^{8} \)
61$D_{4}$ \( ( 1 - 48 T - 74 T^{2} - 48 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
67$D_{4}$ \( ( 1 - 78 T + 10492 T^{2} - 78 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
71$D_4\times C_2$ \( 1 - 4972 T^{2} - 694929 T^{4} - 4972 p^{4} T^{6} + p^{8} T^{8} \)
73$D_{4}$ \( ( 1 - 98 T + 9356 T^{2} - 98 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
79$D_{4}$ \( ( 1 + 242 T + 26556 T^{2} + 242 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
83$D_4\times C_2$ \( 1 - 2968 T^{2} + 90986226 T^{4} - 2968 p^{4} T^{6} + p^{8} T^{8} \)
89$D_4\times C_2$ \( 1 - 23084 T^{2} + 240217871 T^{4} - 23084 p^{4} T^{6} + p^{8} T^{8} \)
97$D_{4}$ \( ( 1 - 8 T + 8726 T^{2} - 8 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.808837469738253742789583324322, −8.599496540772907144937048503577, −8.441428314539462904843751559097, −8.161514052114040203208925141423, −7.935093765959198865242421203241, −7.19115274670839642728840404840, −7.18316611226507957954376393791, −7.03355254048878499851329517237, −7.00345307192654192995220586709, −6.55441226858031104003712705194, −6.35013629387965750045088782790, −5.89053352468769319973986974840, −5.57292957442234784375623711667, −5.16018856626205032548801493639, −5.10060500313364938215169746061, −4.52624379624049417877732965631, −4.46562978923733278612105752396, −3.63751491190862072636869344443, −3.35682206103020906336606590577, −3.02454824001006349512758653221, −2.52744408403579359690421031930, −2.51260793622614718424922784784, −1.83344230492164416300197464281, −1.32055352489388941270409839888, −0.69276970627616638311289019733, 0.69276970627616638311289019733, 1.32055352489388941270409839888, 1.83344230492164416300197464281, 2.51260793622614718424922784784, 2.52744408403579359690421031930, 3.02454824001006349512758653221, 3.35682206103020906336606590577, 3.63751491190862072636869344443, 4.46562978923733278612105752396, 4.52624379624049417877732965631, 5.10060500313364938215169746061, 5.16018856626205032548801493639, 5.57292957442234784375623711667, 5.89053352468769319973986974840, 6.35013629387965750045088782790, 6.55441226858031104003712705194, 7.00345307192654192995220586709, 7.03355254048878499851329517237, 7.18316611226507957954376393791, 7.19115274670839642728840404840, 7.935093765959198865242421203241, 8.161514052114040203208925141423, 8.441428314539462904843751559097, 8.599496540772907144937048503577, 8.808837469738253742789583324322

Graph of the $Z$-function along the critical line