Properties

Label 4-189e2-1.1-c1e2-0-14
Degree $4$
Conductor $35721$
Sign $1$
Analytic cond. $2.27760$
Root an. cond. $1.22848$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·2-s + 4·4-s + 6·5-s − 5·7-s + 3·8-s + 18·10-s − 3·13-s − 15·14-s + 3·16-s − 3·17-s − 9·19-s + 24·20-s + 17·25-s − 9·26-s − 20·28-s + 9·29-s − 6·31-s + 6·32-s − 9·34-s − 30·35-s − 7·37-s − 27·38-s + 18·40-s − 3·41-s − 43-s + 18·49-s + 51·50-s + ⋯
L(s)  = 1  + 2.12·2-s + 2·4-s + 2.68·5-s − 1.88·7-s + 1.06·8-s + 5.69·10-s − 0.832·13-s − 4.00·14-s + 3/4·16-s − 0.727·17-s − 2.06·19-s + 5.36·20-s + 17/5·25-s − 1.76·26-s − 3.77·28-s + 1.67·29-s − 1.07·31-s + 1.06·32-s − 1.54·34-s − 5.07·35-s − 1.15·37-s − 4.37·38-s + 2.84·40-s − 0.468·41-s − 0.152·43-s + 18/7·49-s + 7.21·50-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 35721 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 35721 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(35721\)    =    \(3^{6} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(2.27760\)
Root analytic conductor: \(1.22848\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 35721,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.161687034\)
\(L(\frac12)\) \(\approx\) \(4.161687034\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
7$C_2$ \( 1 + 5 T + p T^{2} \)
good2$C_2^2$ \( 1 - 3 T + 5 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
5$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
11$C_2^2$ \( 1 - 19 T^{2} + p^{2} T^{4} \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
17$C_2^2$ \( 1 + 3 T - 8 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
19$C_2$ \( ( 1 + T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
23$C_2^2$ \( 1 - 19 T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 - 9 T + 56 T^{2} - 9 p T^{3} + p^{2} T^{4} \)
31$C_2^2$ \( 1 + 6 T + 43 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
37$C_2^2$ \( 1 + 7 T + 12 T^{2} + 7 p T^{3} + p^{2} T^{4} \)
41$C_2^2$ \( 1 + 3 T - 32 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
43$C_2^2$ \( 1 + T - 42 T^{2} + p T^{3} + p^{2} T^{4} \)
47$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 - 15 T + 128 T^{2} - 15 p T^{3} + p^{2} T^{4} \)
59$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 - 24 T + 253 T^{2} - 24 p T^{3} + p^{2} T^{4} \)
67$C_2^2$ \( 1 - 4 T - 51 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
71$C_2^2$ \( 1 - 130 T^{2} + p^{2} T^{4} \)
73$C_2^2$ \( 1 + 9 T + 100 T^{2} + 9 p T^{3} + p^{2} T^{4} \)
79$C_2^2$ \( 1 + 8 T - 15 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
83$C_2^2$ \( 1 - 15 T + 142 T^{2} - 15 p T^{3} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 3 T - 80 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
97$C_2^2$ \( 1 + 3 T + 100 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.80389300771747457324342231409, −12.76162064228188467154084977381, −12.38251671581157514297850003327, −11.67531767153783021823022308673, −10.61745912684713716323891137596, −10.37798055714551652126354418374, −9.873579597725457193422854875596, −9.703844744779360319034302167829, −8.715092273493901535443830730038, −8.708631301806503453496507094623, −6.92615712046326489284773316905, −6.89213041171976789131685994296, −6.20616212865813750100494825717, −5.89657219822988426669678908810, −5.42297074508985339728239871501, −4.85130786653000608853382043751, −4.09932339155468257746074422346, −3.39720133514273382413083312497, −2.41184879641827223592830948461, −2.21997194182799098016930422096, 2.21997194182799098016930422096, 2.41184879641827223592830948461, 3.39720133514273382413083312497, 4.09932339155468257746074422346, 4.85130786653000608853382043751, 5.42297074508985339728239871501, 5.89657219822988426669678908810, 6.20616212865813750100494825717, 6.89213041171976789131685994296, 6.92615712046326489284773316905, 8.708631301806503453496507094623, 8.715092273493901535443830730038, 9.703844744779360319034302167829, 9.873579597725457193422854875596, 10.37798055714551652126354418374, 10.61745912684713716323891137596, 11.67531767153783021823022308673, 12.38251671581157514297850003327, 12.76162064228188467154084977381, 12.80389300771747457324342231409

Graph of the $Z$-function along the critical line