Properties

Label 8-189e4-1.1-c1e4-0-1
Degree $8$
Conductor $1275989841$
Sign $1$
Analytic cond. $5.18747$
Root an. cond. $1.22848$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s − 2·7-s − 16·13-s + 4·16-s + 2·19-s + 4·25-s + 4·28-s + 14·31-s − 16·37-s − 4·43-s − 11·49-s + 32·52-s − 10·61-s − 16·64-s − 4·67-s + 2·73-s − 4·76-s + 8·79-s + 32·91-s − 4·97-s − 8·100-s − 4·103-s + 2·109-s − 8·112-s − 2·121-s − 28·124-s + 127-s + ⋯
L(s)  = 1  − 4-s − 0.755·7-s − 4.43·13-s + 16-s + 0.458·19-s + 4/5·25-s + 0.755·28-s + 2.51·31-s − 2.63·37-s − 0.609·43-s − 1.57·49-s + 4.43·52-s − 1.28·61-s − 2·64-s − 0.488·67-s + 0.234·73-s − 0.458·76-s + 0.900·79-s + 3.35·91-s − 0.406·97-s − 4/5·100-s − 0.394·103-s + 0.191·109-s − 0.755·112-s − 0.181·121-s − 2.51·124-s + 0.0887·127-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{12} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{12} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(3^{12} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(5.18747\)
Root analytic conductor: \(1.22848\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 3^{12} \cdot 7^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.3770153081\)
\(L(\frac12)\) \(\approx\) \(0.3770153081\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
7$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
good2$C_2$$\times$$C_2^2$ \( ( 1 + p T^{2} )^{2}( 1 - p T^{2} + p^{2} T^{4} ) \)
5$C_2^3$ \( 1 - 4 T^{2} - 9 T^{4} - 4 p^{2} T^{6} + p^{4} T^{8} \)
11$C_2^3$ \( 1 + 2 T^{2} - 117 T^{4} + 2 p^{2} T^{6} + p^{4} T^{8} \)
13$C_2$ \( ( 1 + 4 T + p T^{2} )^{4} \)
17$C_2^3$ \( 1 - 28 T^{2} + 495 T^{4} - 28 p^{2} T^{6} + p^{4} T^{8} \)
19$C_2$ \( ( 1 - 8 T + p T^{2} )^{2}( 1 + 7 T + p T^{2} )^{2} \)
23$C_2^3$ \( 1 - 40 T^{2} + 1071 T^{4} - 40 p^{2} T^{6} + p^{4} T^{8} \)
29$C_2^2$ \( ( 1 + 4 T^{2} + p^{2} T^{4} )^{2} \)
31$C_2$ \( ( 1 - 11 T + p T^{2} )^{2}( 1 + 4 T + p T^{2} )^{2} \)
37$C_2^2$ \( ( 1 + 8 T + 27 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{2} \)
41$C_2^2$ \( ( 1 + 28 T^{2} + p^{2} T^{4} )^{2} \)
43$C_2$ \( ( 1 + T + p T^{2} )^{4} \)
47$C_2^3$ \( 1 - 88 T^{2} + 5535 T^{4} - 88 p^{2} T^{6} + p^{4} T^{8} \)
53$C_2^3$ \( 1 - 100 T^{2} + 7191 T^{4} - 100 p^{2} T^{6} + p^{4} T^{8} \)
59$C_2^3$ \( 1 - 22 T^{2} - 2997 T^{4} - 22 p^{2} T^{6} + p^{4} T^{8} \)
61$C_2^2$ \( ( 1 + 5 T - 36 T^{2} + 5 p T^{3} + p^{2} T^{4} )^{2} \)
67$C_2^2$ \( ( 1 + 2 T - 63 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
71$C_2$ \( ( 1 + p T^{2} )^{4} \)
73$C_2^2$ \( ( 1 - T - 72 T^{2} - p T^{3} + p^{2} T^{4} )^{2} \)
79$C_2$ \( ( 1 - 17 T + p T^{2} )^{2}( 1 + 13 T + p T^{2} )^{2} \)
83$C_2^2$ \( ( 1 - 50 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2^3$ \( 1 - 172 T^{2} + 21663 T^{4} - 172 p^{2} T^{6} + p^{4} T^{8} \)
97$C_2$ \( ( 1 + T + p T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.386107836959756905613687760093, −8.898919307860631113655323304460, −8.741912310300545181441345269219, −8.496341649764835168194205485844, −8.007457901723296254136879527838, −7.994620343981560846480658472270, −7.38437923010358338865086347610, −7.35260581050469289555805905078, −7.20533030033003340705467831477, −6.68920028234694589583250605058, −6.60590713056930433224715436838, −6.10988063794248592995902091945, −5.84067678402851654791515757030, −5.25733256871539093432632858317, −5.04974381995710404371216687153, −4.87215554695444942860836066911, −4.73718544340895095236392094312, −4.40056290502220437786994293229, −3.90766409721401139967098081221, −3.21494881838272153135875681200, −3.04210186654321559409953884970, −2.85818645579476803603353314665, −2.22569423766529871921410543048, −1.67767735000749869672040150176, −0.39402985270323709124190149943, 0.39402985270323709124190149943, 1.67767735000749869672040150176, 2.22569423766529871921410543048, 2.85818645579476803603353314665, 3.04210186654321559409953884970, 3.21494881838272153135875681200, 3.90766409721401139967098081221, 4.40056290502220437786994293229, 4.73718544340895095236392094312, 4.87215554695444942860836066911, 5.04974381995710404371216687153, 5.25733256871539093432632858317, 5.84067678402851654791515757030, 6.10988063794248592995902091945, 6.60590713056930433224715436838, 6.68920028234694589583250605058, 7.20533030033003340705467831477, 7.35260581050469289555805905078, 7.38437923010358338865086347610, 7.994620343981560846480658472270, 8.007457901723296254136879527838, 8.496341649764835168194205485844, 8.741912310300545181441345269219, 8.898919307860631113655323304460, 9.386107836959756905613687760093

Graph of the $Z$-function along the critical line