Properties

Label 2-189-189.104-c1-0-21
Degree $2$
Conductor $189$
Sign $-0.974 + 0.222i$
Analytic cond. $1.50917$
Root an. cond. $1.22848$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.924 − 2.53i)2-s + (0.795 − 1.53i)3-s + (−4.05 − 3.40i)4-s + (−0.268 + 1.52i)5-s + (−3.17 − 3.44i)6-s + (1.75 + 1.97i)7-s + (−7.72 + 4.45i)8-s + (−1.73 − 2.44i)9-s + (3.61 + 2.08i)10-s + (3.67 − 0.647i)11-s + (−8.47 + 3.53i)12-s + (0.202 + 0.555i)13-s + (6.64 − 2.62i)14-s + (2.12 + 1.62i)15-s + (2.34 + 13.2i)16-s + (2.21 − 3.83i)17-s + ⋯
L(s)  = 1  + (0.653 − 1.79i)2-s + (0.459 − 0.888i)3-s + (−2.02 − 1.70i)4-s + (−0.119 + 0.680i)5-s + (−1.29 − 1.40i)6-s + (0.663 + 0.748i)7-s + (−2.72 + 1.57i)8-s + (−0.578 − 0.816i)9-s + (1.14 + 0.659i)10-s + (1.10 − 0.195i)11-s + (−2.44 + 1.02i)12-s + (0.0560 + 0.153i)13-s + (1.77 − 0.701i)14-s + (0.548 + 0.418i)15-s + (0.585 + 3.32i)16-s + (0.537 − 0.930i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 189 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.974 + 0.222i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 189 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.974 + 0.222i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(189\)    =    \(3^{3} \cdot 7\)
Sign: $-0.974 + 0.222i$
Analytic conductor: \(1.50917\)
Root analytic conductor: \(1.22848\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{189} (104, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 189,\ (\ :1/2),\ -0.974 + 0.222i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.185242 - 1.64409i\)
\(L(\frac12)\) \(\approx\) \(0.185242 - 1.64409i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-0.795 + 1.53i)T \)
7 \( 1 + (-1.75 - 1.97i)T \)
good2 \( 1 + (-0.924 + 2.53i)T + (-1.53 - 1.28i)T^{2} \)
5 \( 1 + (0.268 - 1.52i)T + (-4.69 - 1.71i)T^{2} \)
11 \( 1 + (-3.67 + 0.647i)T + (10.3 - 3.76i)T^{2} \)
13 \( 1 + (-0.202 - 0.555i)T + (-9.95 + 8.35i)T^{2} \)
17 \( 1 + (-2.21 + 3.83i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (5.88 - 3.39i)T + (9.5 - 16.4i)T^{2} \)
23 \( 1 + (-1.22 + 1.45i)T + (-3.99 - 22.6i)T^{2} \)
29 \( 1 + (0.530 - 1.45i)T + (-22.2 - 18.6i)T^{2} \)
31 \( 1 + (3.97 - 4.74i)T + (-5.38 - 30.5i)T^{2} \)
37 \( 1 + (1.87 - 3.24i)T + (-18.5 - 32.0i)T^{2} \)
41 \( 1 + (1.26 - 0.459i)T + (31.4 - 26.3i)T^{2} \)
43 \( 1 + (1.06 + 6.03i)T + (-40.4 + 14.7i)T^{2} \)
47 \( 1 + (-4.70 + 3.95i)T + (8.16 - 46.2i)T^{2} \)
53 \( 1 - 2.96iT - 53T^{2} \)
59 \( 1 + (-0.751 + 4.26i)T + (-55.4 - 20.1i)T^{2} \)
61 \( 1 + (-6.03 - 7.19i)T + (-10.5 + 60.0i)T^{2} \)
67 \( 1 + (-4.30 + 1.56i)T + (51.3 - 43.0i)T^{2} \)
71 \( 1 + (-4.85 - 2.80i)T + (35.5 + 61.4i)T^{2} \)
73 \( 1 + (-4.50 + 2.59i)T + (36.5 - 63.2i)T^{2} \)
79 \( 1 + (7.68 + 2.79i)T + (60.5 + 50.7i)T^{2} \)
83 \( 1 + (4.97 + 1.80i)T + (63.5 + 53.3i)T^{2} \)
89 \( 1 + (2.95 + 5.11i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (18.3 - 3.24i)T + (91.1 - 33.1i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.07558622787804955886178584236, −11.46686255072561951159417119986, −10.53428207821538210833767076720, −9.203181459383251182747203103172, −8.510984392092093744958243361968, −6.72862010046842386826222885758, −5.41416107799673259066159997299, −3.83608581206074044718695946246, −2.72045363985681066446481020341, −1.55556284177566682747123725013, 3.89766894190991657579219031512, 4.41564342774466769741217725353, 5.49182246141869779781011826909, 6.80022545148229834486524106650, 8.003920823802723243314823379841, 8.627733977311909672780644463453, 9.537473579814014660276852604733, 11.04904813675747390400537485573, 12.56017980456344664542161899723, 13.38727538029849744179343652791

Graph of the $Z$-function along the critical line