Properties

Label 2-1881-1.1-c1-0-54
Degree $2$
Conductor $1881$
Sign $-1$
Analytic cond. $15.0198$
Root an. cond. $3.87554$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s + 3·5-s − 4·7-s − 11-s + 2·13-s + 4·16-s + 19-s − 6·20-s − 3·23-s + 4·25-s + 8·28-s + 6·29-s − 7·31-s − 12·35-s − 7·37-s − 10·43-s + 2·44-s + 9·49-s − 4·52-s − 6·53-s − 3·55-s − 3·59-s − 10·61-s − 8·64-s + 6·65-s + 11·67-s − 15·71-s + ⋯
L(s)  = 1  − 4-s + 1.34·5-s − 1.51·7-s − 0.301·11-s + 0.554·13-s + 16-s + 0.229·19-s − 1.34·20-s − 0.625·23-s + 4/5·25-s + 1.51·28-s + 1.11·29-s − 1.25·31-s − 2.02·35-s − 1.15·37-s − 1.52·43-s + 0.301·44-s + 9/7·49-s − 0.554·52-s − 0.824·53-s − 0.404·55-s − 0.390·59-s − 1.28·61-s − 64-s + 0.744·65-s + 1.34·67-s − 1.78·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1881 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1881 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1881\)    =    \(3^{2} \cdot 11 \cdot 19\)
Sign: $-1$
Analytic conductor: \(15.0198\)
Root analytic conductor: \(3.87554\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1881,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
11 \( 1 + T \)
19 \( 1 - T \)
good2 \( 1 + p T^{2} \) 1.2.a
5 \( 1 - 3 T + p T^{2} \) 1.5.ad
7 \( 1 + 4 T + p T^{2} \) 1.7.e
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + p T^{2} \) 1.17.a
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 7 T + p T^{2} \) 1.31.h
37 \( 1 + 7 T + p T^{2} \) 1.37.h
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 3 T + p T^{2} \) 1.59.d
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 11 T + p T^{2} \) 1.67.al
71 \( 1 + 15 T + p T^{2} \) 1.71.p
73 \( 1 - 8 T + p T^{2} \) 1.73.ai
79 \( 1 + 16 T + p T^{2} \) 1.79.q
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 9 T + p T^{2} \) 1.89.j
97 \( 1 + T + p T^{2} \) 1.97.b
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.994315520752837576599542028376, −8.334213787813537186877460650857, −7.10432886853576102879328057666, −6.22636985341606678010346984201, −5.73134031558754015333927704989, −4.87227236817412946007588627989, −3.68590786967197864045388603157, −2.94812083380032633044384777279, −1.58351857703013188026420779751, 0, 1.58351857703013188026420779751, 2.94812083380032633044384777279, 3.68590786967197864045388603157, 4.87227236817412946007588627989, 5.73134031558754015333927704989, 6.22636985341606678010346984201, 7.10432886853576102879328057666, 8.334213787813537186877460650857, 8.994315520752837576599542028376

Graph of the $Z$-function along the critical line