Properties

Label 2-1875-1.1-c3-0-33
Degree $2$
Conductor $1875$
Sign $1$
Analytic cond. $110.628$
Root an. cond. $10.5180$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.33·2-s − 3·3-s − 6.20·4-s + 4.01·6-s + 12.2·7-s + 19.0·8-s + 9·9-s − 2.48·11-s + 18.6·12-s − 85.6·13-s − 16.3·14-s + 24.1·16-s + 5.54·17-s − 12.0·18-s − 24.1·19-s − 36.6·21-s + 3.32·22-s + 103.·23-s − 57.0·24-s + 114.·26-s − 27·27-s − 75.7·28-s − 114.·29-s + 153.·31-s − 184.·32-s + 7.44·33-s − 7.43·34-s + ⋯
L(s)  = 1  − 0.473·2-s − 0.577·3-s − 0.775·4-s + 0.273·6-s + 0.659·7-s + 0.841·8-s + 0.333·9-s − 0.0680·11-s + 0.447·12-s − 1.82·13-s − 0.312·14-s + 0.377·16-s + 0.0791·17-s − 0.157·18-s − 0.291·19-s − 0.380·21-s + 0.0322·22-s + 0.936·23-s − 0.485·24-s + 0.865·26-s − 0.192·27-s − 0.511·28-s − 0.731·29-s + 0.891·31-s − 1.01·32-s + 0.0392·33-s − 0.0374·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1875 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1875 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1875\)    =    \(3 \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(110.628\)
Root analytic conductor: \(10.5180\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1875,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.7393570705\)
\(L(\frac12)\) \(\approx\) \(0.7393570705\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 3T \)
5 \( 1 \)
good2 \( 1 + 1.33T + 8T^{2} \)
7 \( 1 - 12.2T + 343T^{2} \)
11 \( 1 + 2.48T + 1.33e3T^{2} \)
13 \( 1 + 85.6T + 2.19e3T^{2} \)
17 \( 1 - 5.54T + 4.91e3T^{2} \)
19 \( 1 + 24.1T + 6.85e3T^{2} \)
23 \( 1 - 103.T + 1.21e4T^{2} \)
29 \( 1 + 114.T + 2.43e4T^{2} \)
31 \( 1 - 153.T + 2.97e4T^{2} \)
37 \( 1 - 342.T + 5.06e4T^{2} \)
41 \( 1 - 34.6T + 6.89e4T^{2} \)
43 \( 1 - 154.T + 7.95e4T^{2} \)
47 \( 1 + 338.T + 1.03e5T^{2} \)
53 \( 1 + 645.T + 1.48e5T^{2} \)
59 \( 1 - 662.T + 2.05e5T^{2} \)
61 \( 1 + 357.T + 2.26e5T^{2} \)
67 \( 1 - 531.T + 3.00e5T^{2} \)
71 \( 1 + 634.T + 3.57e5T^{2} \)
73 \( 1 + 962.T + 3.89e5T^{2} \)
79 \( 1 - 568.T + 4.93e5T^{2} \)
83 \( 1 - 319.T + 5.71e5T^{2} \)
89 \( 1 + 1.33e3T + 7.04e5T^{2} \)
97 \( 1 + 399.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.987177181849458777860760329529, −7.954039143402871806607944942063, −7.56447096896047947573525794487, −6.58593692544131047267409907639, −5.42141789418775952189310864756, −4.82073725464271040496124234242, −4.25408101646129624305365956803, −2.79273654369833676871940003519, −1.56468651965471053649777396462, −0.46484314305370674915485829899, 0.46484314305370674915485829899, 1.56468651965471053649777396462, 2.79273654369833676871940003519, 4.25408101646129624305365956803, 4.82073725464271040496124234242, 5.42141789418775952189310864756, 6.58593692544131047267409907639, 7.56447096896047947573525794487, 7.954039143402871806607944942063, 8.987177181849458777860760329529

Graph of the $Z$-function along the critical line