Properties

Label 2-1872-1.1-c3-0-29
Degree $2$
Conductor $1872$
Sign $1$
Analytic cond. $110.451$
Root an. cond. $10.5095$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 10.5·5-s + 22·7-s + 5.29·11-s + 13·13-s + 116.·17-s + 126·19-s − 31.7·23-s − 12.9·25-s + 52.9·29-s + 182·31-s − 232.·35-s − 86·37-s − 444.·41-s − 96·43-s − 365.·47-s + 141·49-s − 190.·53-s − 56.0·55-s + 587.·59-s + 574·61-s − 137.·65-s + 530·67-s − 809.·71-s − 154·73-s + 116.·77-s + 460·79-s + 322.·83-s + ⋯
L(s)  = 1  − 0.946·5-s + 1.18·7-s + 0.145·11-s + 0.277·13-s + 1.66·17-s + 1.52·19-s − 0.287·23-s − 0.103·25-s + 0.338·29-s + 1.05·31-s − 1.12·35-s − 0.382·37-s − 1.69·41-s − 0.340·43-s − 1.13·47-s + 0.411·49-s − 0.493·53-s − 0.137·55-s + 1.29·59-s + 1.20·61-s − 0.262·65-s + 0.966·67-s − 1.35·71-s − 0.246·73-s + 0.172·77-s + 0.655·79-s + 0.426·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1872\)    =    \(2^{4} \cdot 3^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(110.451\)
Root analytic conductor: \(10.5095\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1872,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.423744734\)
\(L(\frac12)\) \(\approx\) \(2.423744734\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 - 13T \)
good5 \( 1 + 10.5T + 125T^{2} \)
7 \( 1 - 22T + 343T^{2} \)
11 \( 1 - 5.29T + 1.33e3T^{2} \)
17 \( 1 - 116.T + 4.91e3T^{2} \)
19 \( 1 - 126T + 6.85e3T^{2} \)
23 \( 1 + 31.7T + 1.21e4T^{2} \)
29 \( 1 - 52.9T + 2.43e4T^{2} \)
31 \( 1 - 182T + 2.97e4T^{2} \)
37 \( 1 + 86T + 5.06e4T^{2} \)
41 \( 1 + 444.T + 6.89e4T^{2} \)
43 \( 1 + 96T + 7.95e4T^{2} \)
47 \( 1 + 365.T + 1.03e5T^{2} \)
53 \( 1 + 190.T + 1.48e5T^{2} \)
59 \( 1 - 587.T + 2.05e5T^{2} \)
61 \( 1 - 574T + 2.26e5T^{2} \)
67 \( 1 - 530T + 3.00e5T^{2} \)
71 \( 1 + 809.T + 3.57e5T^{2} \)
73 \( 1 + 154T + 3.89e5T^{2} \)
79 \( 1 - 460T + 4.93e5T^{2} \)
83 \( 1 - 322.T + 5.71e5T^{2} \)
89 \( 1 - 1.43e3T + 7.04e5T^{2} \)
97 \( 1 - 70T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.587312073348037404643404087014, −7.998373767938106964748992131891, −7.59398403599394666927823793813, −6.60474381323440160411632242825, −5.40781936592282316597809230681, −4.90475345646598451914629993566, −3.80500945247167310784569168428, −3.14702860015315655433302913679, −1.65302357910904430810153014684, −0.78135240449665849959619226711, 0.78135240449665849959619226711, 1.65302357910904430810153014684, 3.14702860015315655433302913679, 3.80500945247167310784569168428, 4.90475345646598451914629993566, 5.40781936592282316597809230681, 6.60474381323440160411632242825, 7.59398403599394666927823793813, 7.998373767938106964748992131891, 8.587312073348037404643404087014

Graph of the $Z$-function along the critical line