Properties

Label 2-1872-1.1-c1-0-5
Degree $2$
Conductor $1872$
Sign $1$
Analytic cond. $14.9479$
Root an. cond. $3.86626$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·7-s + 13-s + 6·17-s − 2·19-s − 5·25-s + 6·29-s − 2·31-s + 2·37-s + 12·41-s + 4·43-s − 3·49-s − 6·53-s + 12·59-s + 2·61-s + 10·67-s + 12·71-s + 14·73-s − 8·79-s + 12·83-s − 2·91-s − 10·97-s − 18·101-s + 16·103-s − 12·107-s + 14·109-s − 6·113-s − 12·119-s + ⋯
L(s)  = 1  − 0.755·7-s + 0.277·13-s + 1.45·17-s − 0.458·19-s − 25-s + 1.11·29-s − 0.359·31-s + 0.328·37-s + 1.87·41-s + 0.609·43-s − 3/7·49-s − 0.824·53-s + 1.56·59-s + 0.256·61-s + 1.22·67-s + 1.42·71-s + 1.63·73-s − 0.900·79-s + 1.31·83-s − 0.209·91-s − 1.01·97-s − 1.79·101-s + 1.57·103-s − 1.16·107-s + 1.34·109-s − 0.564·113-s − 1.10·119-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1872\)    =    \(2^{4} \cdot 3^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(14.9479\)
Root analytic conductor: \(3.86626\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1872,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.589040676\)
\(L(\frac12)\) \(\approx\) \(1.589040676\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 - T \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 12 T + p T^{2} \) 1.41.am
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 10 T + p T^{2} \) 1.67.ak
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.485148325596294183816572559050, −8.330201821850417900078578930922, −7.76963269770720756784752102354, −6.78013921434981904340142936703, −6.05756828657732859884712721948, −5.31787425835571416225740279689, −4.13529224817546208100485895471, −3.37281563192054858635234459773, −2.33566034645582102228367652701, −0.861350648696305200147674327945, 0.861350648696305200147674327945, 2.33566034645582102228367652701, 3.37281563192054858635234459773, 4.13529224817546208100485895471, 5.31787425835571416225740279689, 6.05756828657732859884712721948, 6.78013921434981904340142936703, 7.76963269770720756784752102354, 8.330201821850417900078578930922, 9.485148325596294183816572559050

Graph of the $Z$-function along the critical line