Properties

Label 2-1859-1.1-c3-0-13
Degree $2$
Conductor $1859$
Sign $1$
Analytic cond. $109.684$
Root an. cond. $10.4730$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.07·2-s − 5.99·3-s − 6.85·4-s + 0.973·5-s + 6.41·6-s − 28.3·7-s + 15.9·8-s + 8.90·9-s − 1.04·10-s − 11·11-s + 41.0·12-s + 30.3·14-s − 5.83·15-s + 37.7·16-s + 29.1·17-s − 9.53·18-s + 150.·19-s − 6.67·20-s + 169.·21-s + 11.7·22-s − 45.7·23-s − 95.3·24-s − 124.·25-s + 108.·27-s + 194.·28-s − 148.·29-s + 6.24·30-s + ⋯
L(s)  = 1  − 0.378·2-s − 1.15·3-s − 0.856·4-s + 0.0870·5-s + 0.436·6-s − 1.52·7-s + 0.703·8-s + 0.329·9-s − 0.0329·10-s − 0.301·11-s + 0.987·12-s + 0.579·14-s − 0.100·15-s + 0.590·16-s + 0.415·17-s − 0.124·18-s + 1.81·19-s − 0.0745·20-s + 1.76·21-s + 0.114·22-s − 0.414·23-s − 0.810·24-s − 0.992·25-s + 0.772·27-s + 1.30·28-s − 0.949·29-s + 0.0380·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1859 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1859 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1859\)    =    \(11 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(109.684\)
Root analytic conductor: \(10.4730\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1859,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.05722673944\)
\(L(\frac12)\) \(\approx\) \(0.05722673944\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad11 \( 1 + 11T \)
13 \( 1 \)
good2 \( 1 + 1.07T + 8T^{2} \)
3 \( 1 + 5.99T + 27T^{2} \)
5 \( 1 - 0.973T + 125T^{2} \)
7 \( 1 + 28.3T + 343T^{2} \)
17 \( 1 - 29.1T + 4.91e3T^{2} \)
19 \( 1 - 150.T + 6.85e3T^{2} \)
23 \( 1 + 45.7T + 1.21e4T^{2} \)
29 \( 1 + 148.T + 2.43e4T^{2} \)
31 \( 1 + 142.T + 2.97e4T^{2} \)
37 \( 1 + 213.T + 5.06e4T^{2} \)
41 \( 1 + 183.T + 6.89e4T^{2} \)
43 \( 1 + 332.T + 7.95e4T^{2} \)
47 \( 1 + 458.T + 1.03e5T^{2} \)
53 \( 1 - 27.0T + 1.48e5T^{2} \)
59 \( 1 + 608.T + 2.05e5T^{2} \)
61 \( 1 - 612.T + 2.26e5T^{2} \)
67 \( 1 - 180.T + 3.00e5T^{2} \)
71 \( 1 - 507.T + 3.57e5T^{2} \)
73 \( 1 + 478.T + 3.89e5T^{2} \)
79 \( 1 + 69.9T + 4.93e5T^{2} \)
83 \( 1 + 1.06e3T + 5.71e5T^{2} \)
89 \( 1 - 887.T + 7.04e5T^{2} \)
97 \( 1 + 1.42e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.125613379586900432368577697155, −8.096484409382995118938527431446, −7.24473235352174889910398243602, −6.42659589221644959289167188243, −5.46171088238900957728007499817, −5.24238564180175569552661948420, −3.82987075206151535102382878866, −3.16356092950196600463033645207, −1.41489534619141446442841536699, −0.13398200628139511476934287305, 0.13398200628139511476934287305, 1.41489534619141446442841536699, 3.16356092950196600463033645207, 3.82987075206151535102382878866, 5.24238564180175569552661948420, 5.46171088238900957728007499817, 6.42659589221644959289167188243, 7.24473235352174889910398243602, 8.096484409382995118938527431446, 9.125613379586900432368577697155

Graph of the $Z$-function along the critical line