Properties

Label 2-1859-1.1-c3-0-151
Degree $2$
Conductor $1859$
Sign $1$
Analytic cond. $109.684$
Root an. cond. $10.4730$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.61·2-s + 3.68·3-s + 13.2·4-s + 19.7·5-s − 17.0·6-s − 18.7·7-s − 24.4·8-s − 13.4·9-s − 91.3·10-s − 11·11-s + 49.0·12-s + 86.6·14-s + 72.9·15-s + 6.37·16-s + 67.7·17-s + 61.8·18-s + 129.·19-s + 263.·20-s − 69.2·21-s + 50.7·22-s − 103.·23-s − 90.0·24-s + 266.·25-s − 148.·27-s − 249.·28-s + 269.·29-s − 336.·30-s + ⋯
L(s)  = 1  − 1.63·2-s + 0.709·3-s + 1.66·4-s + 1.77·5-s − 1.15·6-s − 1.01·7-s − 1.07·8-s − 0.496·9-s − 2.88·10-s − 0.301·11-s + 1.17·12-s + 1.65·14-s + 1.25·15-s + 0.0996·16-s + 0.966·17-s + 0.809·18-s + 1.56·19-s + 2.94·20-s − 0.719·21-s + 0.491·22-s − 0.939·23-s − 0.766·24-s + 2.13·25-s − 1.06·27-s − 1.68·28-s + 1.72·29-s − 2.04·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1859 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1859 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1859\)    =    \(11 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(109.684\)
Root analytic conductor: \(10.4730\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1859,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.572705871\)
\(L(\frac12)\) \(\approx\) \(1.572705871\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad11 \( 1 + 11T \)
13 \( 1 \)
good2 \( 1 + 4.61T + 8T^{2} \)
3 \( 1 - 3.68T + 27T^{2} \)
5 \( 1 - 19.7T + 125T^{2} \)
7 \( 1 + 18.7T + 343T^{2} \)
17 \( 1 - 67.7T + 4.91e3T^{2} \)
19 \( 1 - 129.T + 6.85e3T^{2} \)
23 \( 1 + 103.T + 1.21e4T^{2} \)
29 \( 1 - 269.T + 2.43e4T^{2} \)
31 \( 1 - 75.1T + 2.97e4T^{2} \)
37 \( 1 + 9.87T + 5.06e4T^{2} \)
41 \( 1 - 162.T + 6.89e4T^{2} \)
43 \( 1 + 231.T + 7.95e4T^{2} \)
47 \( 1 - 42.7T + 1.03e5T^{2} \)
53 \( 1 + 717.T + 1.48e5T^{2} \)
59 \( 1 - 583.T + 2.05e5T^{2} \)
61 \( 1 + 341.T + 2.26e5T^{2} \)
67 \( 1 + 697.T + 3.00e5T^{2} \)
71 \( 1 - 620.T + 3.57e5T^{2} \)
73 \( 1 - 790.T + 3.89e5T^{2} \)
79 \( 1 + 119.T + 4.93e5T^{2} \)
83 \( 1 - 98.6T + 5.71e5T^{2} \)
89 \( 1 - 455.T + 7.04e5T^{2} \)
97 \( 1 - 346.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.108939963089089363957698876043, −8.278506532389690864890214910996, −7.63606629161558081227142634857, −6.56740048114893946252457780983, −6.05390990170726460860480019002, −5.12768840988314357428694763279, −3.19222334354108655215839227455, −2.67410363336006479736093257359, −1.71723179540143207177062645495, −0.73264599778494164027182575035, 0.73264599778494164027182575035, 1.71723179540143207177062645495, 2.67410363336006479736093257359, 3.19222334354108655215839227455, 5.12768840988314357428694763279, 6.05390990170726460860480019002, 6.56740048114893946252457780983, 7.63606629161558081227142634857, 8.278506532389690864890214910996, 9.108939963089089363957698876043

Graph of the $Z$-function along the critical line