Properties

Label 2-1856-1.1-c3-0-11
Degree $2$
Conductor $1856$
Sign $1$
Analytic cond. $109.507$
Root an. cond. $10.4645$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.92·3-s − 14.3·5-s − 16.8·7-s − 18.4·9-s + 16.5·11-s − 55.3·13-s − 41.9·15-s + 6.28·17-s − 119.·19-s − 49.3·21-s − 22.5·23-s + 80.3·25-s − 132.·27-s + 29·29-s − 228.·31-s + 48.4·33-s + 241.·35-s − 257.·37-s − 162.·39-s + 382.·41-s − 170.·43-s + 264.·45-s + 172.·47-s − 58.0·49-s + 18.3·51-s + 69.2·53-s − 237.·55-s + ⋯
L(s)  = 1  + 0.563·3-s − 1.28·5-s − 0.911·7-s − 0.682·9-s + 0.453·11-s − 1.18·13-s − 0.721·15-s + 0.0896·17-s − 1.43·19-s − 0.513·21-s − 0.204·23-s + 0.643·25-s − 0.947·27-s + 0.185·29-s − 1.32·31-s + 0.255·33-s + 1.16·35-s − 1.14·37-s − 0.665·39-s + 1.45·41-s − 0.603·43-s + 0.875·45-s + 0.536·47-s − 0.169·49-s + 0.0504·51-s + 0.179·53-s − 0.581·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1856 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1856 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1856\)    =    \(2^{6} \cdot 29\)
Sign: $1$
Analytic conductor: \(109.507\)
Root analytic conductor: \(10.4645\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1856,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.3539313480\)
\(L(\frac12)\) \(\approx\) \(0.3539313480\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
29 \( 1 - 29T \)
good3 \( 1 - 2.92T + 27T^{2} \)
5 \( 1 + 14.3T + 125T^{2} \)
7 \( 1 + 16.8T + 343T^{2} \)
11 \( 1 - 16.5T + 1.33e3T^{2} \)
13 \( 1 + 55.3T + 2.19e3T^{2} \)
17 \( 1 - 6.28T + 4.91e3T^{2} \)
19 \( 1 + 119.T + 6.85e3T^{2} \)
23 \( 1 + 22.5T + 1.21e4T^{2} \)
31 \( 1 + 228.T + 2.97e4T^{2} \)
37 \( 1 + 257.T + 5.06e4T^{2} \)
41 \( 1 - 382.T + 6.89e4T^{2} \)
43 \( 1 + 170.T + 7.95e4T^{2} \)
47 \( 1 - 172.T + 1.03e5T^{2} \)
53 \( 1 - 69.2T + 1.48e5T^{2} \)
59 \( 1 + 43.6T + 2.05e5T^{2} \)
61 \( 1 + 684.T + 2.26e5T^{2} \)
67 \( 1 + 528.T + 3.00e5T^{2} \)
71 \( 1 - 488.T + 3.57e5T^{2} \)
73 \( 1 - 80.3T + 3.89e5T^{2} \)
79 \( 1 - 741.T + 4.93e5T^{2} \)
83 \( 1 + 1.36e3T + 5.71e5T^{2} \)
89 \( 1 - 957.T + 7.04e5T^{2} \)
97 \( 1 + 1.11e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.900189611281703717773023124654, −8.075494255014778904135658992312, −7.42785715362284246992230849667, −6.66603546233126812819039032058, −5.73130481340176389450071768870, −4.54935948356122501099980012255, −3.76833999296329831475636297671, −3.07348439256872127241787591997, −2.09153643984546117523166341893, −0.25069234914285467695743834697, 0.25069234914285467695743834697, 2.09153643984546117523166341893, 3.07348439256872127241787591997, 3.76833999296329831475636297671, 4.54935948356122501099980012255, 5.73130481340176389450071768870, 6.66603546233126812819039032058, 7.42785715362284246992230849667, 8.075494255014778904135658992312, 8.900189611281703717773023124654

Graph of the $Z$-function along the critical line