Properties

Label 2-1856-1.1-c3-0-151
Degree $2$
Conductor $1856$
Sign $-1$
Analytic cond. $109.507$
Root an. cond. $10.4645$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 6.29·3-s + 5.83·5-s − 20.2·7-s + 12.5·9-s + 59.1·11-s − 21.2·13-s + 36.7·15-s − 93.2·17-s + 69.4·19-s − 127.·21-s − 34.2·23-s − 90.8·25-s − 90.7·27-s − 29·29-s − 155.·31-s + 372.·33-s − 118.·35-s − 117.·37-s − 133.·39-s − 325.·41-s − 358.·43-s + 73.4·45-s + 287.·47-s + 67.5·49-s − 586.·51-s + 496.·53-s + 345.·55-s + ⋯
L(s)  = 1  + 1.21·3-s + 0.522·5-s − 1.09·7-s + 0.465·9-s + 1.62·11-s − 0.453·13-s + 0.632·15-s − 1.33·17-s + 0.838·19-s − 1.32·21-s − 0.310·23-s − 0.727·25-s − 0.646·27-s − 0.185·29-s − 0.898·31-s + 1.96·33-s − 0.571·35-s − 0.521·37-s − 0.549·39-s − 1.24·41-s − 1.27·43-s + 0.243·45-s + 0.892·47-s + 0.196·49-s − 1.61·51-s + 1.28·53-s + 0.847·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1856 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1856 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1856\)    =    \(2^{6} \cdot 29\)
Sign: $-1$
Analytic conductor: \(109.507\)
Root analytic conductor: \(10.4645\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1856,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
29 \( 1 + 29T \)
good3 \( 1 - 6.29T + 27T^{2} \)
5 \( 1 - 5.83T + 125T^{2} \)
7 \( 1 + 20.2T + 343T^{2} \)
11 \( 1 - 59.1T + 1.33e3T^{2} \)
13 \( 1 + 21.2T + 2.19e3T^{2} \)
17 \( 1 + 93.2T + 4.91e3T^{2} \)
19 \( 1 - 69.4T + 6.85e3T^{2} \)
23 \( 1 + 34.2T + 1.21e4T^{2} \)
31 \( 1 + 155.T + 2.97e4T^{2} \)
37 \( 1 + 117.T + 5.06e4T^{2} \)
41 \( 1 + 325.T + 6.89e4T^{2} \)
43 \( 1 + 358.T + 7.95e4T^{2} \)
47 \( 1 - 287.T + 1.03e5T^{2} \)
53 \( 1 - 496.T + 1.48e5T^{2} \)
59 \( 1 + 474.T + 2.05e5T^{2} \)
61 \( 1 + 136.T + 2.26e5T^{2} \)
67 \( 1 + 42.5T + 3.00e5T^{2} \)
71 \( 1 + 266.T + 3.57e5T^{2} \)
73 \( 1 - 735.T + 3.89e5T^{2} \)
79 \( 1 - 1.18e3T + 4.93e5T^{2} \)
83 \( 1 - 962.T + 5.71e5T^{2} \)
89 \( 1 - 709.T + 7.04e5T^{2} \)
97 \( 1 + 413.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.782855444690171854017981432234, −7.75689715851637566026366610763, −6.82188876342972768188019552604, −6.35969162349904090961182456758, −5.26190660410232623467982398960, −3.93227634635400021816749345084, −3.47308319686156569495406977651, −2.42069375554332488388597857296, −1.61747383993137737663772829777, 0, 1.61747383993137737663772829777, 2.42069375554332488388597857296, 3.47308319686156569495406977651, 3.93227634635400021816749345084, 5.26190660410232623467982398960, 6.35969162349904090961182456758, 6.82188876342972768188019552604, 7.75689715851637566026366610763, 8.782855444690171854017981432234

Graph of the $Z$-function along the critical line