Properties

Label 2-1856-1.1-c3-0-19
Degree $2$
Conductor $1856$
Sign $1$
Analytic cond. $109.507$
Root an. cond. $10.4645$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.60·3-s − 2.21·5-s − 4.42·7-s − 14.0·9-s − 12.3·11-s + 48.6·13-s + 7.97·15-s − 101.·17-s − 59.2·19-s + 15.9·21-s − 18.0·23-s − 120.·25-s + 147.·27-s + 29·29-s − 20.8·31-s + 44.6·33-s + 9.77·35-s − 101.·37-s − 175.·39-s + 40.7·41-s + 152.·43-s + 30.9·45-s − 121.·47-s − 323.·49-s + 365.·51-s − 177.·53-s + 27.4·55-s + ⋯
L(s)  = 1  − 0.693·3-s − 0.197·5-s − 0.238·7-s − 0.518·9-s − 0.339·11-s + 1.03·13-s + 0.137·15-s − 1.44·17-s − 0.715·19-s + 0.165·21-s − 0.163·23-s − 0.960·25-s + 1.05·27-s + 0.185·29-s − 0.120·31-s + 0.235·33-s + 0.0472·35-s − 0.449·37-s − 0.719·39-s + 0.155·41-s + 0.540·43-s + 0.102·45-s − 0.376·47-s − 0.942·49-s + 1.00·51-s − 0.460·53-s + 0.0671·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1856 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1856 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1856\)    =    \(2^{6} \cdot 29\)
Sign: $1$
Analytic conductor: \(109.507\)
Root analytic conductor: \(10.4645\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1856,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.6247959940\)
\(L(\frac12)\) \(\approx\) \(0.6247959940\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
29 \( 1 - 29T \)
good3 \( 1 + 3.60T + 27T^{2} \)
5 \( 1 + 2.21T + 125T^{2} \)
7 \( 1 + 4.42T + 343T^{2} \)
11 \( 1 + 12.3T + 1.33e3T^{2} \)
13 \( 1 - 48.6T + 2.19e3T^{2} \)
17 \( 1 + 101.T + 4.91e3T^{2} \)
19 \( 1 + 59.2T + 6.85e3T^{2} \)
23 \( 1 + 18.0T + 1.21e4T^{2} \)
31 \( 1 + 20.8T + 2.97e4T^{2} \)
37 \( 1 + 101.T + 5.06e4T^{2} \)
41 \( 1 - 40.7T + 6.89e4T^{2} \)
43 \( 1 - 152.T + 7.95e4T^{2} \)
47 \( 1 + 121.T + 1.03e5T^{2} \)
53 \( 1 + 177.T + 1.48e5T^{2} \)
59 \( 1 - 109.T + 2.05e5T^{2} \)
61 \( 1 + 61.7T + 2.26e5T^{2} \)
67 \( 1 + 471.T + 3.00e5T^{2} \)
71 \( 1 + 546.T + 3.57e5T^{2} \)
73 \( 1 - 169.T + 3.89e5T^{2} \)
79 \( 1 + 184.T + 4.93e5T^{2} \)
83 \( 1 - 210.T + 5.71e5T^{2} \)
89 \( 1 + 1.39e3T + 7.04e5T^{2} \)
97 \( 1 + 1.09e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.717241747905845761285561613447, −8.287680416233651716697518654001, −7.17154985178421822366248165565, −6.28811726016516622683607964524, −5.88540284967537646962097905030, −4.81208146739665162395787704916, −4.00845322439387898969074545875, −2.94119380656423376600886343846, −1.81073669264476657940451618591, −0.37007931889644157044188192798, 0.37007931889644157044188192798, 1.81073669264476657940451618591, 2.94119380656423376600886343846, 4.00845322439387898969074545875, 4.81208146739665162395787704916, 5.88540284967537646962097905030, 6.28811726016516622683607964524, 7.17154985178421822366248165565, 8.287680416233651716697518654001, 8.717241747905845761285561613447

Graph of the $Z$-function along the critical line