Properties

Label 2-1856-1.1-c3-0-3
Degree $2$
Conductor $1856$
Sign $1$
Analytic cond. $109.507$
Root an. cond. $10.4645$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.34·3-s − 11.5·5-s − 8.54·7-s − 21.5·9-s + 47.4·11-s − 81.9·13-s + 27.0·15-s − 49.9·17-s − 20.4·19-s + 20.0·21-s − 105.·23-s + 8.57·25-s + 113.·27-s − 29·29-s − 22.4·31-s − 111.·33-s + 98.7·35-s − 316.·37-s + 192.·39-s − 427.·41-s − 190.·43-s + 248.·45-s − 459.·47-s − 270.·49-s + 117.·51-s + 545.·53-s − 548.·55-s + ⋯
L(s)  = 1  − 0.451·3-s − 1.03·5-s − 0.461·7-s − 0.796·9-s + 1.30·11-s − 1.74·13-s + 0.466·15-s − 0.712·17-s − 0.246·19-s + 0.208·21-s − 0.954·23-s + 0.0685·25-s + 0.810·27-s − 0.185·29-s − 0.130·31-s − 0.587·33-s + 0.476·35-s − 1.40·37-s + 0.788·39-s − 1.62·41-s − 0.676·43-s + 0.823·45-s − 1.42·47-s − 0.787·49-s + 0.321·51-s + 1.41·53-s − 1.34·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1856 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1856 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1856\)    =    \(2^{6} \cdot 29\)
Sign: $1$
Analytic conductor: \(109.507\)
Root analytic conductor: \(10.4645\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1856,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.04796351166\)
\(L(\frac12)\) \(\approx\) \(0.04796351166\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
29 \( 1 + 29T \)
good3 \( 1 + 2.34T + 27T^{2} \)
5 \( 1 + 11.5T + 125T^{2} \)
7 \( 1 + 8.54T + 343T^{2} \)
11 \( 1 - 47.4T + 1.33e3T^{2} \)
13 \( 1 + 81.9T + 2.19e3T^{2} \)
17 \( 1 + 49.9T + 4.91e3T^{2} \)
19 \( 1 + 20.4T + 6.85e3T^{2} \)
23 \( 1 + 105.T + 1.21e4T^{2} \)
31 \( 1 + 22.4T + 2.97e4T^{2} \)
37 \( 1 + 316.T + 5.06e4T^{2} \)
41 \( 1 + 427.T + 6.89e4T^{2} \)
43 \( 1 + 190.T + 7.95e4T^{2} \)
47 \( 1 + 459.T + 1.03e5T^{2} \)
53 \( 1 - 545.T + 1.48e5T^{2} \)
59 \( 1 - 809.T + 2.05e5T^{2} \)
61 \( 1 + 67.1T + 2.26e5T^{2} \)
67 \( 1 + 822.T + 3.00e5T^{2} \)
71 \( 1 + 666.T + 3.57e5T^{2} \)
73 \( 1 - 275.T + 3.89e5T^{2} \)
79 \( 1 + 681.T + 4.93e5T^{2} \)
83 \( 1 + 1.07e3T + 5.71e5T^{2} \)
89 \( 1 + 229.T + 7.04e5T^{2} \)
97 \( 1 - 261.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.761681560486049207249352507000, −8.198638590916045392655001881027, −7.06359492531593800729899475652, −6.72338575874362184863070910781, −5.65536311386665703683022615777, −4.74673805567748201249597162091, −3.93446503318803640802880007490, −3.06512599842420614835951780540, −1.84559128665715248508101841910, −0.099321308691437306871733765022, 0.099321308691437306871733765022, 1.84559128665715248508101841910, 3.06512599842420614835951780540, 3.93446503318803640802880007490, 4.74673805567748201249597162091, 5.65536311386665703683022615777, 6.72338575874362184863070910781, 7.06359492531593800729899475652, 8.198638590916045392655001881027, 8.761681560486049207249352507000

Graph of the $Z$-function along the critical line