Properties

Label 2-1856-1.1-c3-0-22
Degree $2$
Conductor $1856$
Sign $1$
Analytic cond. $109.507$
Root an. cond. $10.4645$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5.97·3-s + 11.6·5-s − 8.29·7-s + 8.66·9-s − 49.0·11-s + 24.9·13-s − 69.2·15-s − 42.7·17-s − 146.·19-s + 49.5·21-s − 12.9·23-s + 9.57·25-s + 109.·27-s − 29·29-s − 133.·31-s + 293.·33-s − 96.2·35-s + 381.·37-s − 149.·39-s − 416.·41-s − 447.·43-s + 100.·45-s + 555.·47-s − 274.·49-s + 255.·51-s + 308.·53-s − 569.·55-s + ⋯
L(s)  = 1  − 1.14·3-s + 1.03·5-s − 0.447·7-s + 0.321·9-s − 1.34·11-s + 0.533·13-s − 1.19·15-s − 0.610·17-s − 1.77·19-s + 0.514·21-s − 0.117·23-s + 0.0765·25-s + 0.780·27-s − 0.185·29-s − 0.775·31-s + 1.54·33-s − 0.464·35-s + 1.69·37-s − 0.612·39-s − 1.58·41-s − 1.58·43-s + 0.333·45-s + 1.72·47-s − 0.799·49-s + 0.701·51-s + 0.800·53-s − 1.39·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1856 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1856 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1856\)    =    \(2^{6} \cdot 29\)
Sign: $1$
Analytic conductor: \(109.507\)
Root analytic conductor: \(10.4645\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1856,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.6835767374\)
\(L(\frac12)\) \(\approx\) \(0.6835767374\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
29 \( 1 + 29T \)
good3 \( 1 + 5.97T + 27T^{2} \)
5 \( 1 - 11.6T + 125T^{2} \)
7 \( 1 + 8.29T + 343T^{2} \)
11 \( 1 + 49.0T + 1.33e3T^{2} \)
13 \( 1 - 24.9T + 2.19e3T^{2} \)
17 \( 1 + 42.7T + 4.91e3T^{2} \)
19 \( 1 + 146.T + 6.85e3T^{2} \)
23 \( 1 + 12.9T + 1.21e4T^{2} \)
31 \( 1 + 133.T + 2.97e4T^{2} \)
37 \( 1 - 381.T + 5.06e4T^{2} \)
41 \( 1 + 416.T + 6.89e4T^{2} \)
43 \( 1 + 447.T + 7.95e4T^{2} \)
47 \( 1 - 555.T + 1.03e5T^{2} \)
53 \( 1 - 308.T + 1.48e5T^{2} \)
59 \( 1 - 647.T + 2.05e5T^{2} \)
61 \( 1 - 394.T + 2.26e5T^{2} \)
67 \( 1 - 216.T + 3.00e5T^{2} \)
71 \( 1 + 866.T + 3.57e5T^{2} \)
73 \( 1 + 408.T + 3.89e5T^{2} \)
79 \( 1 + 218.T + 4.93e5T^{2} \)
83 \( 1 - 928.T + 5.71e5T^{2} \)
89 \( 1 + 1.12e3T + 7.04e5T^{2} \)
97 \( 1 - 1.47e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.867376458985717443421145624074, −8.219743253498888546049367051353, −6.96665639393251124094438898006, −6.31282304093805909604906227586, −5.72628390001580829470916168983, −5.11191124701775321477163234507, −4.09036500835493654756380824588, −2.70876647552423500717866031368, −1.87018129696503953238485085770, −0.39042925884778436420694122851, 0.39042925884778436420694122851, 1.87018129696503953238485085770, 2.70876647552423500717866031368, 4.09036500835493654756380824588, 5.11191124701775321477163234507, 5.72628390001580829470916168983, 6.31282304093805909604906227586, 6.96665639393251124094438898006, 8.219743253498888546049367051353, 8.867376458985717443421145624074

Graph of the $Z$-function along the critical line