Properties

Label 2-1856-1.1-c3-0-18
Degree $2$
Conductor $1856$
Sign $1$
Analytic cond. $109.507$
Root an. cond. $10.4645$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.82·3-s − 3.68·5-s + 23.1·7-s − 12.3·9-s − 16.6·11-s − 87.9·13-s + 14.0·15-s − 58.1·17-s − 102.·19-s − 88.5·21-s + 111.·23-s − 111.·25-s + 150.·27-s + 29·29-s − 146.·31-s + 63.7·33-s − 85.3·35-s + 77.3·37-s + 336.·39-s + 245.·41-s − 369.·43-s + 45.6·45-s + 3.90·47-s + 193.·49-s + 222.·51-s − 355.·53-s + 61.4·55-s + ⋯
L(s)  = 1  − 0.735·3-s − 0.329·5-s + 1.25·7-s − 0.458·9-s − 0.457·11-s − 1.87·13-s + 0.242·15-s − 0.829·17-s − 1.23·19-s − 0.920·21-s + 1.01·23-s − 0.891·25-s + 1.07·27-s + 0.185·29-s − 0.847·31-s + 0.336·33-s − 0.412·35-s + 0.343·37-s + 1.38·39-s + 0.935·41-s − 1.31·43-s + 0.151·45-s + 0.0121·47-s + 0.564·49-s + 0.610·51-s − 0.922·53-s + 0.150·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1856 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1856 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1856\)    =    \(2^{6} \cdot 29\)
Sign: $1$
Analytic conductor: \(109.507\)
Root analytic conductor: \(10.4645\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1856,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.6282488729\)
\(L(\frac12)\) \(\approx\) \(0.6282488729\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
29 \( 1 - 29T \)
good3 \( 1 + 3.82T + 27T^{2} \)
5 \( 1 + 3.68T + 125T^{2} \)
7 \( 1 - 23.1T + 343T^{2} \)
11 \( 1 + 16.6T + 1.33e3T^{2} \)
13 \( 1 + 87.9T + 2.19e3T^{2} \)
17 \( 1 + 58.1T + 4.91e3T^{2} \)
19 \( 1 + 102.T + 6.85e3T^{2} \)
23 \( 1 - 111.T + 1.21e4T^{2} \)
31 \( 1 + 146.T + 2.97e4T^{2} \)
37 \( 1 - 77.3T + 5.06e4T^{2} \)
41 \( 1 - 245.T + 6.89e4T^{2} \)
43 \( 1 + 369.T + 7.95e4T^{2} \)
47 \( 1 - 3.90T + 1.03e5T^{2} \)
53 \( 1 + 355.T + 1.48e5T^{2} \)
59 \( 1 - 223.T + 2.05e5T^{2} \)
61 \( 1 - 308.T + 2.26e5T^{2} \)
67 \( 1 - 548.T + 3.00e5T^{2} \)
71 \( 1 - 121.T + 3.57e5T^{2} \)
73 \( 1 - 228.T + 3.89e5T^{2} \)
79 \( 1 + 665.T + 4.93e5T^{2} \)
83 \( 1 + 1.41e3T + 5.71e5T^{2} \)
89 \( 1 - 955.T + 7.04e5T^{2} \)
97 \( 1 + 598.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.734238678100278130617933219289, −8.074655754601552015529396605680, −7.32796255336788021079890197010, −6.53332499483654270068715178685, −5.42056420932711594827198346386, −4.91918505203119311754376027250, −4.23773456362551392900354839712, −2.71830106858783285734144539110, −1.91352296387446365630176602713, −0.36626095455036408436420138306, 0.36626095455036408436420138306, 1.91352296387446365630176602713, 2.71830106858783285734144539110, 4.23773456362551392900354839712, 4.91918505203119311754376027250, 5.42056420932711594827198346386, 6.53332499483654270068715178685, 7.32796255336788021079890197010, 8.074655754601552015529396605680, 8.734238678100278130617933219289

Graph of the $Z$-function along the critical line