Properties

Label 2-1856-1.1-c3-0-55
Degree $2$
Conductor $1856$
Sign $1$
Analytic cond. $109.507$
Root an. cond. $10.4645$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5.35·3-s + 20.7·5-s − 26.2·7-s + 1.71·9-s + 11.3·11-s + 82.2·13-s − 110.·15-s + 74.7·17-s − 49.4·19-s + 140.·21-s − 126.·23-s + 303.·25-s + 135.·27-s − 29·29-s + 169.·31-s − 60.6·33-s − 542.·35-s − 333.·37-s − 440.·39-s − 222.·41-s + 474.·43-s + 35.6·45-s + 49.3·47-s + 343.·49-s − 400.·51-s − 409.·53-s + 234.·55-s + ⋯
L(s)  = 1  − 1.03·3-s + 1.85·5-s − 1.41·7-s + 0.0636·9-s + 0.310·11-s + 1.75·13-s − 1.90·15-s + 1.06·17-s − 0.596·19-s + 1.45·21-s − 1.14·23-s + 2.42·25-s + 0.965·27-s − 0.185·29-s + 0.980·31-s − 0.319·33-s − 2.62·35-s − 1.48·37-s − 1.80·39-s − 0.846·41-s + 1.68·43-s + 0.117·45-s + 0.153·47-s + 1.00·49-s − 1.09·51-s − 1.06·53-s + 0.574·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1856 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1856 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1856\)    =    \(2^{6} \cdot 29\)
Sign: $1$
Analytic conductor: \(109.507\)
Root analytic conductor: \(10.4645\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1856,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.915427217\)
\(L(\frac12)\) \(\approx\) \(1.915427217\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
29 \( 1 + 29T \)
good3 \( 1 + 5.35T + 27T^{2} \)
5 \( 1 - 20.7T + 125T^{2} \)
7 \( 1 + 26.2T + 343T^{2} \)
11 \( 1 - 11.3T + 1.33e3T^{2} \)
13 \( 1 - 82.2T + 2.19e3T^{2} \)
17 \( 1 - 74.7T + 4.91e3T^{2} \)
19 \( 1 + 49.4T + 6.85e3T^{2} \)
23 \( 1 + 126.T + 1.21e4T^{2} \)
31 \( 1 - 169.T + 2.97e4T^{2} \)
37 \( 1 + 333.T + 5.06e4T^{2} \)
41 \( 1 + 222.T + 6.89e4T^{2} \)
43 \( 1 - 474.T + 7.95e4T^{2} \)
47 \( 1 - 49.3T + 1.03e5T^{2} \)
53 \( 1 + 409.T + 1.48e5T^{2} \)
59 \( 1 + 281.T + 2.05e5T^{2} \)
61 \( 1 - 407.T + 2.26e5T^{2} \)
67 \( 1 - 296.T + 3.00e5T^{2} \)
71 \( 1 - 483.T + 3.57e5T^{2} \)
73 \( 1 - 152.T + 3.89e5T^{2} \)
79 \( 1 - 657.T + 4.93e5T^{2} \)
83 \( 1 + 9.66T + 5.71e5T^{2} \)
89 \( 1 + 647.T + 7.04e5T^{2} \)
97 \( 1 - 540.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.111122314176807623450138670267, −8.284608353819555347004452765368, −6.67775916871884704303949251869, −6.33936595921767010709648586230, −5.86786060308456725708424303804, −5.25996136340954709002446773341, −3.83376483195164506438699664419, −2.89956340018518848879029982117, −1.68185257868308230089828628717, −0.70360611634289038872795397778, 0.70360611634289038872795397778, 1.68185257868308230089828628717, 2.89956340018518848879029982117, 3.83376483195164506438699664419, 5.25996136340954709002446773341, 5.86786060308456725708424303804, 6.33936595921767010709648586230, 6.67775916871884704303949251869, 8.284608353819555347004452765368, 9.111122314176807623450138670267

Graph of the $Z$-function along the critical line