Properties

Label 2-1856-1.1-c3-0-47
Degree $2$
Conductor $1856$
Sign $1$
Analytic cond. $109.507$
Root an. cond. $10.4645$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6.28·3-s − 18.9·5-s + 32.3·7-s + 12.4·9-s + 29.5·11-s + 0.0104·13-s + 119.·15-s − 9.38·17-s + 98.7·19-s − 202.·21-s + 152.·23-s + 235.·25-s + 91.4·27-s − 29·29-s + 192.·31-s − 185.·33-s − 613.·35-s − 3.01·37-s − 0.0653·39-s − 140.·41-s − 346.·43-s − 236.·45-s − 282.·47-s + 700.·49-s + 58.9·51-s − 628.·53-s − 561.·55-s + ⋯
L(s)  = 1  − 1.20·3-s − 1.69·5-s + 1.74·7-s + 0.460·9-s + 0.809·11-s + 0.000221·13-s + 2.05·15-s − 0.133·17-s + 1.19·19-s − 2.10·21-s + 1.38·23-s + 1.88·25-s + 0.651·27-s − 0.185·29-s + 1.11·31-s − 0.978·33-s − 2.96·35-s − 0.0134·37-s − 0.000268·39-s − 0.534·41-s − 1.22·43-s − 0.783·45-s − 0.875·47-s + 2.04·49-s + 0.161·51-s − 1.62·53-s − 1.37·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1856 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1856 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1856\)    =    \(2^{6} \cdot 29\)
Sign: $1$
Analytic conductor: \(109.507\)
Root analytic conductor: \(10.4645\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1856,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.297222365\)
\(L(\frac12)\) \(\approx\) \(1.297222365\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
29 \( 1 + 29T \)
good3 \( 1 + 6.28T + 27T^{2} \)
5 \( 1 + 18.9T + 125T^{2} \)
7 \( 1 - 32.3T + 343T^{2} \)
11 \( 1 - 29.5T + 1.33e3T^{2} \)
13 \( 1 - 0.0104T + 2.19e3T^{2} \)
17 \( 1 + 9.38T + 4.91e3T^{2} \)
19 \( 1 - 98.7T + 6.85e3T^{2} \)
23 \( 1 - 152.T + 1.21e4T^{2} \)
31 \( 1 - 192.T + 2.97e4T^{2} \)
37 \( 1 + 3.01T + 5.06e4T^{2} \)
41 \( 1 + 140.T + 6.89e4T^{2} \)
43 \( 1 + 346.T + 7.95e4T^{2} \)
47 \( 1 + 282.T + 1.03e5T^{2} \)
53 \( 1 + 628.T + 1.48e5T^{2} \)
59 \( 1 - 586.T + 2.05e5T^{2} \)
61 \( 1 - 818.T + 2.26e5T^{2} \)
67 \( 1 - 463.T + 3.00e5T^{2} \)
71 \( 1 - 23.3T + 3.57e5T^{2} \)
73 \( 1 + 83.8T + 3.89e5T^{2} \)
79 \( 1 - 141.T + 4.93e5T^{2} \)
83 \( 1 + 994.T + 5.71e5T^{2} \)
89 \( 1 + 270.T + 7.04e5T^{2} \)
97 \( 1 + 1.23e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.456364955579919814076275433971, −8.227133265071480628214249277810, −7.20139923777324925194456709637, −6.70745082906611919401718701810, −5.33564919672808044975940360405, −4.88948489516090838858881092021, −4.18134938896574318978557443114, −3.14117668670011759425667501309, −1.37959430839094073395948660818, −0.64825932977477679299733350988, 0.64825932977477679299733350988, 1.37959430839094073395948660818, 3.14117668670011759425667501309, 4.18134938896574318978557443114, 4.88948489516090838858881092021, 5.33564919672808044975940360405, 6.70745082906611919401718701810, 7.20139923777324925194456709637, 8.227133265071480628214249277810, 8.456364955579919814076275433971

Graph of the $Z$-function along the critical line