Properties

Label 2-1856-1.1-c3-0-110
Degree $2$
Conductor $1856$
Sign $1$
Analytic cond. $109.507$
Root an. cond. $10.4645$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7.53·3-s + 7.78·5-s + 5.94·7-s + 29.7·9-s + 21.2·11-s + 74.0·13-s + 58.6·15-s + 109.·17-s − 96.9·19-s + 44.7·21-s − 16.9·23-s − 64.4·25-s + 20.7·27-s + 29·29-s + 216.·31-s + 160.·33-s + 46.2·35-s + 138.·37-s + 557.·39-s + 344.·41-s − 61.6·43-s + 231.·45-s − 77.0·47-s − 307.·49-s + 821.·51-s − 19.8·53-s + 165.·55-s + ⋯
L(s)  = 1  + 1.44·3-s + 0.696·5-s + 0.320·7-s + 1.10·9-s + 0.582·11-s + 1.58·13-s + 1.00·15-s + 1.55·17-s − 1.17·19-s + 0.465·21-s − 0.153·23-s − 0.515·25-s + 0.147·27-s + 0.185·29-s + 1.25·31-s + 0.844·33-s + 0.223·35-s + 0.615·37-s + 2.29·39-s + 1.31·41-s − 0.218·43-s + 0.767·45-s − 0.239·47-s − 0.897·49-s + 2.25·51-s − 0.0514·53-s + 0.405·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1856 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1856 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1856\)    =    \(2^{6} \cdot 29\)
Sign: $1$
Analytic conductor: \(109.507\)
Root analytic conductor: \(10.4645\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1856,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(5.621031330\)
\(L(\frac12)\) \(\approx\) \(5.621031330\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
29 \( 1 - 29T \)
good3 \( 1 - 7.53T + 27T^{2} \)
5 \( 1 - 7.78T + 125T^{2} \)
7 \( 1 - 5.94T + 343T^{2} \)
11 \( 1 - 21.2T + 1.33e3T^{2} \)
13 \( 1 - 74.0T + 2.19e3T^{2} \)
17 \( 1 - 109.T + 4.91e3T^{2} \)
19 \( 1 + 96.9T + 6.85e3T^{2} \)
23 \( 1 + 16.9T + 1.21e4T^{2} \)
31 \( 1 - 216.T + 2.97e4T^{2} \)
37 \( 1 - 138.T + 5.06e4T^{2} \)
41 \( 1 - 344.T + 6.89e4T^{2} \)
43 \( 1 + 61.6T + 7.95e4T^{2} \)
47 \( 1 + 77.0T + 1.03e5T^{2} \)
53 \( 1 + 19.8T + 1.48e5T^{2} \)
59 \( 1 + 732.T + 2.05e5T^{2} \)
61 \( 1 + 310.T + 2.26e5T^{2} \)
67 \( 1 + 765.T + 3.00e5T^{2} \)
71 \( 1 - 74.3T + 3.57e5T^{2} \)
73 \( 1 + 421.T + 3.89e5T^{2} \)
79 \( 1 - 1.11e3T + 4.93e5T^{2} \)
83 \( 1 - 1.08e3T + 5.71e5T^{2} \)
89 \( 1 + 547.T + 7.04e5T^{2} \)
97 \( 1 + 29.9T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.880799436507148609483449583629, −8.124100476276533413183111120793, −7.70451071033190385438833120152, −6.32935232097516079327979111120, −5.94818397281442969382979483075, −4.54594572780925327737187332711, −3.70549783708401849925375826876, −2.95031630101859559748233313322, −1.89110282452172163265027464947, −1.15580126746815094046533518946, 1.15580126746815094046533518946, 1.89110282452172163265027464947, 2.95031630101859559748233313322, 3.70549783708401849925375826876, 4.54594572780925327737187332711, 5.94818397281442969382979483075, 6.32935232097516079327979111120, 7.70451071033190385438833120152, 8.124100476276533413183111120793, 8.880799436507148609483449583629

Graph of the $Z$-function along the critical line