Properties

Label 2-1856-1.1-c3-0-91
Degree $2$
Conductor $1856$
Sign $1$
Analytic cond. $109.507$
Root an. cond. $10.4645$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.75·3-s + 22.0·5-s + 32.1·7-s − 4.38·9-s + 52.9·11-s − 23.5·13-s − 104.·15-s + 86.2·17-s − 95.1·19-s − 152.·21-s − 85.1·23-s + 361.·25-s + 149.·27-s + 29·29-s + 3.58·31-s − 251.·33-s + 708.·35-s + 368.·37-s + 111.·39-s − 257.·41-s + 196.·43-s − 96.7·45-s − 164.·47-s + 688.·49-s − 410.·51-s + 293.·53-s + 1.16e3·55-s + ⋯
L(s)  = 1  − 0.915·3-s + 1.97·5-s + 1.73·7-s − 0.162·9-s + 1.45·11-s − 0.501·13-s − 1.80·15-s + 1.23·17-s − 1.14·19-s − 1.58·21-s − 0.771·23-s + 2.89·25-s + 1.06·27-s + 0.185·29-s + 0.0207·31-s − 1.32·33-s + 3.42·35-s + 1.63·37-s + 0.458·39-s − 0.981·41-s + 0.698·43-s − 0.320·45-s − 0.511·47-s + 2.00·49-s − 1.12·51-s + 0.760·53-s + 2.86·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1856 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1856 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1856\)    =    \(2^{6} \cdot 29\)
Sign: $1$
Analytic conductor: \(109.507\)
Root analytic conductor: \(10.4645\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1856,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(3.458717134\)
\(L(\frac12)\) \(\approx\) \(3.458717134\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
29 \( 1 - 29T \)
good3 \( 1 + 4.75T + 27T^{2} \)
5 \( 1 - 22.0T + 125T^{2} \)
7 \( 1 - 32.1T + 343T^{2} \)
11 \( 1 - 52.9T + 1.33e3T^{2} \)
13 \( 1 + 23.5T + 2.19e3T^{2} \)
17 \( 1 - 86.2T + 4.91e3T^{2} \)
19 \( 1 + 95.1T + 6.85e3T^{2} \)
23 \( 1 + 85.1T + 1.21e4T^{2} \)
31 \( 1 - 3.58T + 2.97e4T^{2} \)
37 \( 1 - 368.T + 5.06e4T^{2} \)
41 \( 1 + 257.T + 6.89e4T^{2} \)
43 \( 1 - 196.T + 7.95e4T^{2} \)
47 \( 1 + 164.T + 1.03e5T^{2} \)
53 \( 1 - 293.T + 1.48e5T^{2} \)
59 \( 1 - 73.8T + 2.05e5T^{2} \)
61 \( 1 - 666.T + 2.26e5T^{2} \)
67 \( 1 + 155.T + 3.00e5T^{2} \)
71 \( 1 + 400.T + 3.57e5T^{2} \)
73 \( 1 + 300.T + 3.89e5T^{2} \)
79 \( 1 + 1.27e3T + 4.93e5T^{2} \)
83 \( 1 + 510.T + 5.71e5T^{2} \)
89 \( 1 - 637.T + 7.04e5T^{2} \)
97 \( 1 - 129.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.890591258569949497562846530731, −8.274978908772284812647016142513, −7.06872997598060346242943911237, −6.18787022423171160291188311796, −5.74138362036240992091418218312, −5.03973071389066130243182080583, −4.26193599715034746692441197859, −2.55220833135160556261865683247, −1.66284608745555839035677448315, −1.02270431722260773031722861875, 1.02270431722260773031722861875, 1.66284608745555839035677448315, 2.55220833135160556261865683247, 4.26193599715034746692441197859, 5.03973071389066130243182080583, 5.74138362036240992091418218312, 6.18787022423171160291188311796, 7.06872997598060346242943911237, 8.274978908772284812647016142513, 8.890591258569949497562846530731

Graph of the $Z$-function along the critical line