Properties

Label 8-1850e4-1.1-c1e4-0-0
Degree $8$
Conductor $1.171\times 10^{13}$
Sign $1$
Analytic cond. $47620.6$
Root an. cond. $3.84347$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s + 4·9-s − 8·11-s + 3·16-s − 4·19-s + 8·29-s − 4·31-s − 8·36-s − 8·41-s + 16·44-s + 4·49-s + 20·59-s + 8·61-s − 4·64-s − 16·71-s + 8·76-s − 28·79-s + 6·81-s + 8·89-s − 32·99-s − 24·101-s − 8·109-s − 16·116-s + 20·121-s + 8·124-s + 127-s + 131-s + ⋯
L(s)  = 1  − 4-s + 4/3·9-s − 2.41·11-s + 3/4·16-s − 0.917·19-s + 1.48·29-s − 0.718·31-s − 4/3·36-s − 1.24·41-s + 2.41·44-s + 4/7·49-s + 2.60·59-s + 1.02·61-s − 1/2·64-s − 1.89·71-s + 0.917·76-s − 3.15·79-s + 2/3·81-s + 0.847·89-s − 3.21·99-s − 2.38·101-s − 0.766·109-s − 1.48·116-s + 1.81·121-s + 0.718·124-s + 0.0887·127-s + 0.0873·131-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 5^{8} \cdot 37^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 5^{8} \cdot 37^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 5^{8} \cdot 37^{4}\)
Sign: $1$
Analytic conductor: \(47620.6\)
Root analytic conductor: \(3.84347\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 5^{8} \cdot 37^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.2890866422\)
\(L(\frac12)\) \(\approx\) \(0.2890866422\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 + T^{2} )^{2} \)
5 \( 1 \)
37$C_2$ \( ( 1 + T^{2} )^{2} \)
good3$D_4\times C_2$ \( 1 - 4 T^{2} + 10 T^{4} - 4 p^{2} T^{6} + p^{4} T^{8} \)
7$D_4\times C_2$ \( 1 - 4 T^{2} - 6 T^{4} - 4 p^{2} T^{6} + p^{4} T^{8} \)
11$D_{4}$ \( ( 1 + 4 T + 14 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
13$D_4\times C_2$ \( 1 - 20 T^{2} + 246 T^{4} - 20 p^{2} T^{6} + p^{4} T^{8} \)
17$D_4\times C_2$ \( 1 - 36 T^{2} + 710 T^{4} - 36 p^{2} T^{6} + p^{4} T^{8} \)
19$D_{4}$ \( ( 1 + 2 T + 12 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 + 18 T^{2} + p^{2} T^{4} )^{2} \)
29$D_{4}$ \( ( 1 - 4 T + 14 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
31$D_{4}$ \( ( 1 + 2 T + 60 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
41$C_2$ \( ( 1 + 2 T + p T^{2} )^{4} \)
43$C_2^2$ \( ( 1 - 38 T^{2} + p^{2} T^{4} )^{2} \)
47$D_4\times C_2$ \( 1 - 164 T^{2} + 11034 T^{4} - 164 p^{2} T^{6} + p^{4} T^{8} \)
53$C_2^2$ \( ( 1 - 70 T^{2} + p^{2} T^{4} )^{2} \)
59$D_{4}$ \( ( 1 - 10 T + 116 T^{2} - 10 p T^{3} + p^{2} T^{4} )^{2} \)
61$D_{4}$ \( ( 1 - 4 T + 78 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
67$D_4\times C_2$ \( 1 - 68 T^{2} + 2634 T^{4} - 68 p^{2} T^{6} + p^{4} T^{8} \)
71$D_{4}$ \( ( 1 + 8 T + 110 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{2} \)
73$D_4\times C_2$ \( 1 - 124 T^{2} + 7590 T^{4} - 124 p^{2} T^{6} + p^{4} T^{8} \)
79$D_{4}$ \( ( 1 + 14 T + 204 T^{2} + 14 p T^{3} + p^{2} T^{4} )^{2} \)
83$D_4\times C_2$ \( 1 - 228 T^{2} + 26186 T^{4} - 228 p^{2} T^{6} + p^{4} T^{8} \)
89$C_2$ \( ( 1 - 2 T + p T^{2} )^{4} \)
97$C_2^2$ \( ( 1 - 190 T^{2} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.65029793566055903355546308856, −6.35424620082476919540345432579, −6.18629492953428028726422166611, −5.78483252997752371096327570559, −5.71592599953374055210745278461, −5.38224302748975609646192112287, −5.18063091829708337009660101916, −5.10136191615120178248826050008, −5.07231044088994821649847385769, −4.52191808866164364804430068844, −4.30080619409569732522080765437, −4.28932651868748553973147135274, −4.07940059263292907150033875044, −3.80047590515608099156433508570, −3.53839405809838761439950205447, −2.99835697077606186585073568699, −2.93516964188152706749074709112, −2.86820236731229023909658896955, −2.35536341556365986370658436055, −2.14137728201475462284399007313, −1.88321315829624607037759863753, −1.41900352738111328028068348418, −1.15404701267860452455985041143, −0.68751852305849781152909956136, −0.12368224523285514056220162979, 0.12368224523285514056220162979, 0.68751852305849781152909956136, 1.15404701267860452455985041143, 1.41900352738111328028068348418, 1.88321315829624607037759863753, 2.14137728201475462284399007313, 2.35536341556365986370658436055, 2.86820236731229023909658896955, 2.93516964188152706749074709112, 2.99835697077606186585073568699, 3.53839405809838761439950205447, 3.80047590515608099156433508570, 4.07940059263292907150033875044, 4.28932651868748553973147135274, 4.30080619409569732522080765437, 4.52191808866164364804430068844, 5.07231044088994821649847385769, 5.10136191615120178248826050008, 5.18063091829708337009660101916, 5.38224302748975609646192112287, 5.71592599953374055210745278461, 5.78483252997752371096327570559, 6.18629492953428028726422166611, 6.35424620082476919540345432579, 6.65029793566055903355546308856

Graph of the $Z$-function along the critical line