Properties

Label 2-185-1.1-c1-0-11
Degree $2$
Conductor $185$
Sign $-1$
Analytic cond. $1.47723$
Root an. cond. $1.21541$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·4-s + 5-s − 3·7-s − 2·9-s − 5·11-s + 2·12-s + 4·13-s − 15-s + 4·16-s − 4·17-s − 8·19-s − 2·20-s + 3·21-s + 4·23-s + 25-s + 5·27-s + 6·28-s + 4·29-s + 2·31-s + 5·33-s − 3·35-s + 4·36-s + 37-s − 4·39-s − 5·41-s − 6·43-s + ⋯
L(s)  = 1  − 0.577·3-s − 4-s + 0.447·5-s − 1.13·7-s − 2/3·9-s − 1.50·11-s + 0.577·12-s + 1.10·13-s − 0.258·15-s + 16-s − 0.970·17-s − 1.83·19-s − 0.447·20-s + 0.654·21-s + 0.834·23-s + 1/5·25-s + 0.962·27-s + 1.13·28-s + 0.742·29-s + 0.359·31-s + 0.870·33-s − 0.507·35-s + 2/3·36-s + 0.164·37-s − 0.640·39-s − 0.780·41-s − 0.914·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 185 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 185 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(185\)    =    \(5 \cdot 37\)
Sign: $-1$
Analytic conductor: \(1.47723\)
Root analytic conductor: \(1.21541\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 185,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad5 \( 1 - T \)
37 \( 1 - T \)
good2 \( 1 + p T^{2} \) 1.2.a
3 \( 1 + T + p T^{2} \) 1.3.b
7 \( 1 + 3 T + p T^{2} \) 1.7.d
11 \( 1 + 5 T + p T^{2} \) 1.11.f
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 4 T + p T^{2} \) 1.29.ae
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
41 \( 1 + 5 T + p T^{2} \) 1.41.f
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 - 9 T + p T^{2} \) 1.47.aj
53 \( 1 - 3 T + p T^{2} \) 1.53.ad
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 5 T + p T^{2} \) 1.71.af
73 \( 1 + 15 T + p T^{2} \) 1.73.p
79 \( 1 + 14 T + p T^{2} \) 1.79.o
83 \( 1 - 11 T + p T^{2} \) 1.83.al
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.39360295919822087145266861758, −10.82163125080847157281668664466, −10.33004705055258350495470777335, −8.998244863867538043901984087402, −8.371026417403938974286449500574, −6.53964005793593991571968990267, −5.74480366916894316991458613686, −4.56875092816775540121130748594, −2.94510070475246635819295308496, 0, 2.94510070475246635819295308496, 4.56875092816775540121130748594, 5.74480366916894316991458613686, 6.53964005793593991571968990267, 8.371026417403938974286449500574, 8.998244863867538043901984087402, 10.33004705055258350495470777335, 10.82163125080847157281668664466, 12.39360295919822087145266861758

Graph of the $Z$-function along the critical line