Properties

Label 2-43e2-1.1-c3-0-359
Degree $2$
Conductor $1849$
Sign $-1$
Analytic cond. $109.094$
Root an. cond. $10.4448$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.75·2-s + 7.02·3-s + 14.5·4-s + 4.22·5-s − 33.3·6-s + 11.1·7-s − 31.2·8-s + 22.2·9-s − 20.0·10-s − 43.0·11-s + 102.·12-s + 62.9·13-s − 53.1·14-s + 29.6·15-s + 31.9·16-s + 136.·17-s − 105.·18-s − 108.·19-s + 61.5·20-s + 78.4·21-s + 204.·22-s − 142.·23-s − 219.·24-s − 107.·25-s − 299.·26-s − 33.0·27-s + 162.·28-s + ⋯
L(s)  = 1  − 1.67·2-s + 1.35·3-s + 1.82·4-s + 0.377·5-s − 2.26·6-s + 0.603·7-s − 1.38·8-s + 0.825·9-s − 0.634·10-s − 1.18·11-s + 2.46·12-s + 1.34·13-s − 1.01·14-s + 0.510·15-s + 0.498·16-s + 1.94·17-s − 1.38·18-s − 1.30·19-s + 0.688·20-s + 0.815·21-s + 1.98·22-s − 1.29·23-s − 1.86·24-s − 0.857·25-s − 2.25·26-s − 0.235·27-s + 1.09·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1849 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1849 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1849\)    =    \(43^{2}\)
Sign: $-1$
Analytic conductor: \(109.094\)
Root analytic conductor: \(10.4448\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1849,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad43 \( 1 \)
good2 \( 1 + 4.75T + 8T^{2} \)
3 \( 1 - 7.02T + 27T^{2} \)
5 \( 1 - 4.22T + 125T^{2} \)
7 \( 1 - 11.1T + 343T^{2} \)
11 \( 1 + 43.0T + 1.33e3T^{2} \)
13 \( 1 - 62.9T + 2.19e3T^{2} \)
17 \( 1 - 136.T + 4.91e3T^{2} \)
19 \( 1 + 108.T + 6.85e3T^{2} \)
23 \( 1 + 142.T + 1.21e4T^{2} \)
29 \( 1 + 149.T + 2.43e4T^{2} \)
31 \( 1 + 29.2T + 2.97e4T^{2} \)
37 \( 1 + 69.6T + 5.06e4T^{2} \)
41 \( 1 - 128.T + 6.89e4T^{2} \)
47 \( 1 + 95.1T + 1.03e5T^{2} \)
53 \( 1 + 416.T + 1.48e5T^{2} \)
59 \( 1 + 644.T + 2.05e5T^{2} \)
61 \( 1 - 228.T + 2.26e5T^{2} \)
67 \( 1 + 877.T + 3.00e5T^{2} \)
71 \( 1 - 258.T + 3.57e5T^{2} \)
73 \( 1 - 396.T + 3.89e5T^{2} \)
79 \( 1 - 916.T + 4.93e5T^{2} \)
83 \( 1 + 66.9T + 5.71e5T^{2} \)
89 \( 1 + 365.T + 7.04e5T^{2} \)
97 \( 1 - 1.01e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.349973061343895554705939390301, −7.889776392740314478433512501067, −7.74328331332570815864464895806, −6.33393484633974358987926648932, −5.53192736910327687358596270581, −3.99075346604975470469195436631, −3.01806364361525464092310049076, −2.00063097801864755678897698594, −1.49932814317535508457449290820, 0, 1.49932814317535508457449290820, 2.00063097801864755678897698594, 3.01806364361525464092310049076, 3.99075346604975470469195436631, 5.53192736910327687358596270581, 6.33393484633974358987926648932, 7.74328331332570815864464895806, 7.889776392740314478433512501067, 8.349973061343895554705939390301

Graph of the $Z$-function along the critical line